Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiều Khánh Vi
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 15:46

a/ ĐKXĐ: ...

\(\Leftrightarrow x+8+\sqrt{x+8}-\left(x+8\right)=\sqrt{x}+\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{x+8}=\sqrt{x}+\sqrt{x+3}\)

\(\Leftrightarrow x+8=2x+3+2\sqrt{x^2+3x}\)

\(\Leftrightarrow5-x=2\sqrt{x^2+3x}\) (\(x\le5\))

\(\Leftrightarrow x^2-10x+25=4\left(x^2+3x\right)\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: \(2\le x\le5\)

\(\Leftrightarrow2\left(x-2\right)+\sqrt{2\left(x-2\right)}\left(\sqrt{5-x}-\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow\sqrt{2\left(x-2\right)}\left(\sqrt{2x-4}+\sqrt{5-x}-\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\sqrt{2x-4}+\sqrt{5-x}=\sqrt{3x-3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}=3x-3\)

\(\Leftrightarrow\sqrt{\left(2x-4\right)\left(5-x\right)}=x-2\)

\(\Leftrightarrow\left(2x-4\right)\left(5-x\right)=\left(x-2\right)^2\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 15:50

c/ ĐKXĐ: \(x\le12\)

\(\Leftrightarrow\sqrt[3]{24+x}\sqrt{12-x}-6\sqrt{12-x}+12-x=0\)

\(\Leftrightarrow\sqrt{12-x}\left(\sqrt[3]{24+x}-6+\sqrt{12-x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\\\sqrt[3]{24+x}+\sqrt{12-x}=6\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^3+b^2=36\end{matrix}\right.\)

\(\Leftrightarrow a^3+\left(6-a\right)^2=36\)

\(\Leftrightarrow a^3+a^2-12a=0\)

\(\Leftrightarrow a\left(a^2+a-12\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{24+x}=0\\\sqrt[3]{24+x}=3\\\sqrt[3]{24+x}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}24+x=0\\24+x=27\\24+x=-64\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 15:58

d/ ĐKXĐ: \(x\le\frac{3}{2}\) ; \(x\ne\frac{3}{8};x\ne-\frac{13}{24}\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2\sqrt{3-2x}-3}-\frac{1}{3-2\sqrt[3]{5+3x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{1}{2\sqrt{3-2x}-3}=\frac{1}{3-2\sqrt[3]{5+3x}}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{3-2x}-3=3-2\sqrt[3]{5+3x}\)

\(\Leftrightarrow\sqrt[3]{5+3x}+\sqrt{3-2x}=3\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{5+3x}=a\\\sqrt{3-2x}=b\ge0\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}a+b=3\\2a^3+3b^2=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=3-a\\2a^3+3b^2=19\end{matrix}\right.\)

\(\Leftrightarrow2a^3+3\left(3-a\right)^2=19\)

\(\Leftrightarrow2a^3+3a^2-18a+8=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-4\\a=\frac{1}{2}\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{5+3x}=-4\\\sqrt[3]{5+3x}=\frac{1}{2}\\\sqrt[3]{5+3x}=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}5+3x=-64\\5+3x=\frac{1}{8}\\5+3x=8\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Ngọc Linh Nhi
Xem chi tiết
phan tuấn anh
4 tháng 10 2016 lúc 17:07

ĐKXĐ: z>0

pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)

<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)

<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)

<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)

<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)

<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)

<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)

vậy x=2

Bùi Thị Vân
4 tháng 10 2016 lúc 17:10

Một bài làm rất hay !

phan tuấn anh
4 tháng 10 2016 lúc 19:22

hihi thank ad vân ..

Nguyễn Hà Anh
Xem chi tiết
HA Nguyễn
Xem chi tiết
Xu Nguyễn
19 tháng 4 2020 lúc 18:17

bạn xem lại đề đi vì rất có thể nó bị sai đó

luu thanh huyen
Xem chi tiết
Nguyễn Vũ Thắng
5 tháng 11 2018 lúc 11:49

ĐKXĐ : x\(\ge0\)

ADBĐT BCS ta được

\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)

\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\))    (1)

Do x\(\ge0\)nên ADBĐT Cauchy ta được:

\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)

Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)

Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)

Nguyễn Vũ Thắng
6 tháng 11 2018 lúc 19:53

3) ĐKXĐ \(-1\le x\le1\)

Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)

\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)

Đặt \(\sqrt{1-x^2}=a\ge0\)

Khi đó phương trình (2) trở thành: 

\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)

\(\Leftrightarrow a^4+14a^2+49=32+32a\)

\(\Leftrightarrow a^4+14a^2-32a+17=0\)

\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)

\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

hay \(\sqrt{1-x^2}=1\)

\(\Leftrightarrow x=0\)(thỏa mãn)

Julian Edward
Xem chi tiết
@Nk>↑@
6 tháng 11 2019 lúc 12:15

a)\(ĐK:-3\le x\le6\)

\(PT\Leftrightarrow\sqrt{x+3}+\sqrt{6-x}=3\)

\(\Leftrightarrow x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}=9\)

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\left(tm\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 23:51

b/ ĐKXĐ: \(x\ge7\)

\(\sqrt{3x-2}=1+\sqrt{x-7}\)

\(\Leftrightarrow3x-2=x-6+2\sqrt{x-7}\)

\(\Leftrightarrow x+2=\sqrt{x-7}\)

\(\Leftrightarrow x^2+4x+4=x-7\)

\(\Leftrightarrow x^2+3x+11=0\) (vô nghiệm)

c/ ĐKXĐ: \(x\ge1;x\ne50\)

\(1-\sqrt{3x+1}=\sqrt{x-1}-7\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{3x+1}=8\)

\(\Leftrightarrow4x+2\sqrt{3x^2-2x-1}=64\)

\(\Leftrightarrow\sqrt{3x^2-2x-1}=32-2x\) (\(x\le16\))

\(\Leftrightarrow3x^2-2x-1=\left(32-2x\right)^2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 0:09

d/ ĐKXĐ: \(x\ge\frac{4}{7};x\ne\frac{13}{7}\)

\(\Leftrightarrow\sqrt{x+1}=\sqrt{7x-4}-3\)

\(\Leftrightarrow\sqrt{x+1}+3=\sqrt{7x-4}\)

\(\Leftrightarrow x+10+6\sqrt{x+1}=7x-4\)

\(\Leftrightarrow3\sqrt{x+1}=3x-7\) (\(x\ge\frac{7}{3}\))

\(\Leftrightarrow9\left(x+1\right)=\left(3x-7\right)^2\)

\(\Leftrightarrow...\)

e/ Giống câu b

f/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-\frac{1}{3}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{\frac{3x+1}{2x-1}}=a\ge0\\\sqrt{\frac{x-1}{2x-1}}=b\ge0\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}2a-b=2\\a^2+5b^2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2a-2\\a^2+5b^2=4\end{matrix}\right.\)

\(\Rightarrow a^2+5\left(2a-2\right)^2=4\)

\(\Leftrightarrow a^2+20\left(a^2-2a+1\right)-4=0\)

\(\Leftrightarrow21a^2-40a+16=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{4}{3}\\a=\frac{4}{7}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{\frac{3x+1}{2x-1}}=\frac{4}{3}\\\sqrt{\frac{3x+1}{2x-1}}=\frac{4}{7}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{3x+1}{2x-1}=\frac{16}{9}\\\frac{3x+1}{2x-1}=\frac{16}{49}\end{matrix}\right.\) \(\Leftrightarrow...\)

Khách vãng lai đã xóa
Lê Nguyễn Trường Chinh
Xem chi tiết
Moon
3 tháng 11 2018 lúc 11:25

em ms hok lớp 1

Ngọc Vĩ
Xem chi tiết
Đặng Minh Triều
4 tháng 2 2016 lúc 13:38

ĐK: x>0

Đặt a=1/x ta được: a>0

\(a+\frac{1}{3}=\sqrt{\frac{1}{9}+a\sqrt{\frac{4}{9}+2a^2}}\)

\(\Leftrightarrow a^2+\frac{1}{9}+\frac{2}{3}a=\frac{1}{9}+a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a^2+\frac{2}{3}a=a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a.\left(a+\frac{2}{3}\right)=a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a+\frac{2}{3}=\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a^2+\frac{4}{9}+\frac{4}{3}a=\frac{4}{9}+2a^2\)

<=>\(a^2-\frac{4}{3}a=0\Leftrightarrow a=0\left(loại\right);a=\frac{4}{3}\)

<=>\(x=\frac{3}{4}\)(loại -3/2)

Vậy x=3/4