Tính
\(\dfrac{20042004x2006}{20062006x2000}\) \(=\)
bài 4 :tính
a)
\(\frac{55x32}{33x56}?\)
b)
\(\frac{20042004x2006}{20062006x2000}?\)
a) = 1760/1848
b) số lớn quá
máy tính còn ko tính nổi
k minh nha
1760/1848
40204260024 / 40124012000
ủng hộ mk nha bn
\(\frac{55X32}{33X56}\)=...............................................
\(\frac{20042004X2006}{20062006X2000}\)=..............................................
\(\frac{55x32}{33x56}=\frac{11x5x2x2x8}{11x3x2x7x8}=\frac{2}{3x7}=\frac{2}{21}\)
\(\frac{20042004x2006}{20062006x2004}=\frac{10001x2004x2006}{10001x2006x2004}=1\)
#
\(\frac{55\times32}{33\times56}=\frac{5\times4}{3\times7}=\frac{20}{21}.\)
\(\frac{20042004\times2006}{20062006\times2000}=\frac{1002\times1003}{1003\times1000}=\frac{501}{500}.\)
Tính hợp lí ( tính nhanh)
\(\dfrac{6}{13.}\dfrac{5}{7}+\dfrac{6}{13}.\dfrac{2}{7}+\dfrac{7}{13} \)
\(\dfrac{6}{13}.\dfrac{5}{7}+\dfrac{6}{13}.\dfrac{2}{7}+\dfrac{7}{13}=\dfrac{6}{13}.\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{7}{13}=\dfrac{6}{13}.1+\dfrac{7}{13}=\dfrac{6}{13}+\dfrac{7}{13}=\dfrac{13}{13}=1\)
#Monster
\(\dfrac{6}{13}\).(\(\dfrac{2}{7}+\dfrac{5}{7}\))+\(\dfrac{7}{13}\)
\(\dfrac{6}{13}\).1+\(\dfrac{7}{13}\)
\(\dfrac{6}{13}\)+\(\dfrac{7}{13}\)
1
1) tính \(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{19683}\)
2) tính \(S=1+\dfrac{1}{5}+\dfrac{1}{25}+...+\dfrac{1}{78125}\)
1: \(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{3^9}\)
\(=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^9\)
u1=1; q=1/3
\(S_9=\dfrac{u1\cdot\left(1-q^9\right)}{1-q}=\dfrac{1\left(1-\left(\dfrac{1}{3}\right)^9\right)}{1-\dfrac{1}{3}}\)
\(=\dfrac{3}{2}\left(1-\dfrac{1}{3^9}\right)\)
2:
\(S=\left(\dfrac{1}{5}\right)^0+\left(\dfrac{1}{5}\right)^1+...+\left(\dfrac{1}{5}\right)^7\)
\(u1=1;q=\dfrac{1}{5}\)
\(S_7=\dfrac{1\cdot\left(1-q^7\right)}{1-q}=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}=\dfrac{5}{4}\left(1-\dfrac{1}{5^7}\right)\)
1) tính \(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{19683}\)
2) tính \(S=1+\dfrac{1}{5}+\dfrac{1}{25}+...+\dfrac{1}{78125}\)
1, Ta có \(\dfrac{\dfrac{1}{3}}{1}=\dfrac{1}{3};\dfrac{\dfrac{1}{9}}{\dfrac{1}{3}}=\dfrac{1}{3};...\)
-> Là cấp số nhân, q = 1/3
Ta có \(S_9=1.\dfrac{1-\left(\dfrac{1}{3}\right)^9}{1-\left(\dfrac{1}{3}\right)}\approx1,5\)
b, Ta có \(\dfrac{\dfrac{1}{5}}{1}=\dfrac{1}{5};\dfrac{\dfrac{1}{25}}{\dfrac{1}{5}}=\dfrac{1}{5};...\)
-> Là cấp số nhân, q = 1/5
\(S_7=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}\approx1,25\)
Tính : S = \(1-\dfrac{1}{2}+\dfrac{1}{3}-\)\(\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}+\dfrac{1}{2021}\)và
P = \(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}+...+\dfrac{1}{2020}+\dfrac{1}{2021}\)
Tính : \(\left(S-P\right)^{2022}\)
S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)
= \(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)
Đặt tính rồi tính :
\(a.\dfrac{5}{6}+\dfrac{2}{5}\)
\(b.\dfrac{6}{5}-\dfrac{3}{4}\)
\(c.\dfrac{9}{16}\times\dfrac{4}{3}\)
\(d.\dfrac{8}{17}:6\)
a: =25/30+12/30=37/30
b: =24/20-15/20=9/20
c: =36/48=3/4
d: =8/17x1/6=8/102=4/51
a) \(\dfrac{25}{30}+\dfrac{12}{30}=\dfrac{37}{30}\)
b) \(\dfrac{24}{20}-\dfrac{15}{20}=\dfrac{9}{20}\)
c) \(\dfrac{36}{48}=\dfrac{3}{4}\)
d) \(\dfrac{8}{17}\times\dfrac{1}{6}=\dfrac{8}{102}=\dfrac{4}{51}\)
\(\dfrac{5}{6}+\dfrac{2}{5}=\dfrac{25}{30}+\dfrac{12}{30}=\dfrac{37}{30}\)
\(\dfrac{6}{5}-\dfrac{3}{4}=\dfrac{24}{20}-\dfrac{15}{20}=\dfrac{9}{20}\)
\(\dfrac{9}{16}\times\dfrac{4}{3}=\dfrac{36}{48}\)
\(\dfrac{8}{17}:6=\dfrac{8}{102}\)
Thực hiện phép tính (tính nhanh nếu có thể)
\(\dfrac{11}{15}.\dfrac{4}{11}+\dfrac{11}{15}.\dfrac{5}{11}+\dfrac{11}{15}.\dfrac{2}{11}\)
= \(\dfrac{11}{15}\). \(\left(\dfrac{4}{11}+\dfrac{5}{11}+\dfrac{2}{11}\right)\)
= \(\dfrac{11}{15}\). 1
=\(\dfrac{11}{15}\)
\(=\dfrac{11}{15}\cdot\left(\dfrac{4}{11}+\dfrac{5}{11}+\dfrac{2}{11}\right)=\dfrac{11}{15}\cdot\dfrac{11}{11}=\dfrac{11}{15}\)
11/15 . ( 4/11 +5/11 + 2/11 )
= 11/15 . 1
= 11/15
Thực hiện phép tính ( tính hợ lí nếu được)
a, \(\dfrac{3}{4}+\dfrac{9}{5}:\dfrac{3}{2}-1\) b, \(\dfrac{6}{7}.\dfrac{8}{13}+\dfrac{6}{13}.\dfrac{9}{7}-\dfrac{4}{13}.\dfrac{6}{7}\)
a: \(=\dfrac{3}{4}+\dfrac{9}{5}\cdot\dfrac{2}{3}-1=\dfrac{3}{4}+\dfrac{6}{5}-1=\dfrac{19}{20}\)
b: \(=\dfrac{6}{7}\left(\dfrac{8}{13}+\dfrac{9}{13}-\dfrac{4}{13}\right)=\dfrac{6}{7}\cdot\dfrac{13}{13}=\dfrac{6}{7}\)
Thực hiện phép tính ( tính hợ lí nếu được)
a, \(\dfrac{3}{4}+\dfrac{9}{5}:\dfrac{3}{2}-1\) b, \(\dfrac{6}{7}.\dfrac{8}{13}+\dfrac{6}{13}.\dfrac{9}{7}-\dfrac{4}{13}.\dfrac{6}{7}\)
= \(\dfrac{3}{4}+\dfrac{6}{5}-1\) = \(\dfrac{6}{7}.\left(\dfrac{8}{13}+\dfrac{9}{13}-\dfrac{4}{13}\right)\)
= \(\dfrac{15}{20}+\dfrac{24}{20}-\dfrac{20}{20}\) = \(\dfrac{6}{7}.\left(\dfrac{17}{13}-\dfrac{4}{13}\right)\)
= \(\dfrac{39}{20}-\dfrac{20}{20}\) = \(\dfrac{6}{7}.1\)
= \(\dfrac{19}{20}\) = \(\dfrac{6}{7}\)
Tính (Tính hợp lí nếu có thể)
a) \(\dfrac{-7}{12}\)-\(\dfrac{3}{36}\)
b) (4-\(\dfrac{5}{12}\)):2+\(\dfrac{5}{24}\)
c) \(\dfrac{8}{9}\)+\(\dfrac{1}{9}\).\(\dfrac{2}{13}\)+\(\dfrac{1}{9}\).\(\dfrac{11}{13}\)
d) \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\). ... .\(\dfrac{9999}{10000}\)
e) \(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)
*Lưu ý: Mong các anh chị trình bày chi tiết để em có thể hiểu bài, em xin các anh chị đừng viết mỗi kết quả xong em chả biết một cái gì ;-;
a: =-21/36-3/36=-24/36=-2/3
b: =43/12*1/2+5/24=43/24+5/24=2
c: =8/9+1/9=1
e: =1-1/4+1/4-1/7+...+1/97-1/100
=1-1/100=99/100