Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Manh

Những câu hỏi liên quan
Nguyễn Hoàng trung
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 6 2021 lúc 12:58

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

Thuy Chu
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 19:23

1: =>x^2-x=3-x

=>x^2=3

=>x=căn 3 hoặc x=-căn 3

2: =>x^2-4x+3=x^2-4x+4 và x>=2

=>3=4(vô lý)

3: =>2|x-1|=6

=>|x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2 hoặc x=4

4: =>|2x-3|=|x-2|

=>2x-3=x-2 hoặc 2x-3=-x+2

=>x=1 hoặc x=5/3

5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)

=>x+2=0

=>x=-2

꧁❥Hikari-Chanツ꧂
Xem chi tiết
Nhan Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 21:44

a) ĐKXĐ: \(x\ge0\)

Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)

\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)

nguyenhoangtung
Xem chi tiết
meme
30 tháng 8 2023 lúc 13:50

i)

Bước 1: Gom các thành phần chứa căn bậc hai ở cùng một vế của phương trình. 2√x + 2√x + 1 − √x + 1 = 4 2√x + 2√x + 1 − √x + 1 - 4 = 0 4√x + 2 − √x − 3 = 0

Bước 2: Đặt √x = t để tạo thành một phương trình bậc nhất. 4t + 2 - t - 3 = 0 3t - 1 = 0 3t = 1 t = 1/3

Bước 3: Giải phương trình tìm x bằng cách thay giá trị của t vào. √x = 1/3 x = (1/3)^2 x = 1/9

Vậy, nghiệm của phương trình là x = 1/9.

ii)

Bước 1: Gom các thành phần chứa căn bậc hai ở cùng một vế của phương trình. √x + 4 + √x − 4 = 2x − 12 + 2√x^2 − 16 √x + √x + 4 − 4 − 2x + 12 − 2√x^2 + 16 = 0 2√x − 2x + √x + 20 − 2√x^2 = 0

Bước 2: Đặt √x = t để tạo thành một phương trình bậc nhất. 2t^2 − 2t + t + 20 − 2t^2 = 0 −t + 20 = 0 t = 20

Bước 3: Giải phương trình tìm x bằng cách thay giá trị của t vào. √x = 20 x = 20^2 x = 400

Vậy, nghiệm của phương trình là x = 400.

Phạm Hà Linh
Xem chi tiết
Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 14:16

\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)

\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)

\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)

Phuonganh Nhu
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 8 2021 lúc 13:20

d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)

e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 13:29

c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)

\(\Leftrightarrow x-4=0\)

hay x=4

Nguyễn Minh Trang
22 tháng 9 2021 lúc 20:16

a) \(\sqrt{x-1+2\sqrt{x-1}.1+1^2}=2;đk:x\)≥1
\(\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}.1+1^2}=2\left(hđt-1\right)\)
\(\sqrt{\left(\sqrt{x-1}+1\right)^2=2}\)
⇔|\(\sqrt{x-1}+1\)|=2
\(\left[{}\begin{matrix}\sqrt{x+1}-1=2\\\sqrt{x+1-1}=-2\end{matrix}\right.\)\(\left[{}\begin{matrix}\sqrt{x+1}=3\\\sqrt{x+1}=-1\left(L\right)\end{matrix}\right.\)⇔x+1=9⇔x=10(TM)
→S={10}

❤  Hoa ❤
Xem chi tiết
tran duc huy
Xem chi tiết
Nguyễn Thị Ngọc Thơ
4 tháng 12 2019 lúc 20:05

1.

ĐK: \(-1\le x\le4\)

Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)

\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)

\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)

2.

ĐK:\(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)

\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)

\(PT\Leftrightarrow t=2x-12+t^2-2x\)

\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.

Khách vãng lai đã xóa