Cho P = \(\dfrac{4\sqrt{x}}{x+2}\)
Tìm \(x\in R\) để \(P\in Z\)
Bài 4:
Cho biểu thức: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm đkxđ của M và rút gọn
b) Tìm x \(\in Z\) để M \(\in Z\)
\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)
__
Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)
\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)
Cho bt P
\(P=\dfrac{2\sqrt{x}-5}{x-5\sqrt{x}+4}+\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-4}\)
a,Rút gọn
b, Tìm x\(\in\)z để P\(\in\)z
\(a.P=\dfrac{2\sqrt{x}-5}{x-5\sqrt{x}+4}+\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-4}=\dfrac{2\sqrt{x}-5+2\sqrt{x}-8-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)}=\dfrac{3}{\sqrt{x}-1}\) ( x ≥ 0 ; x # 1 ; x # 16 )
\(b.\) \(P\text{∈}Z\) ⇔ \(\dfrac{3}{\sqrt{x}-1}\text{∈}Z\) ⇔ \(\sqrt{x}-1\text{∈}\left\{1;-1;3;-3\right\}\)
+) \(\sqrt{x}-1=1\text{⇔}x=4\left(TM\right)\)
+) \(\sqrt{x}-1=-1\text{⇔}x=0\left(TM\right)\)
+) \(\sqrt{x}-1=3\text{⇔}x=16\left(KTM\right)\)
+) \(\sqrt{x}-1=-3\text{⇔}vo-nghiem\)
KL............
Cho \(B=\dfrac{2}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
Tìm \(x\in Z\) để B có giá trị nguyên
\(B=\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
Để B nguyên thì \(\sqrt{x}-3\in\left\{1;-1;5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;8\right\}\)
hay \(x\in\left\{16;4;64\right\}\)
cho biểu thức: P = \(\left(\dfrac{1}{X+\sqrt{X}}+\dfrac{1}{\sqrt{X}+1}\right):\dfrac{2}{\sqrt{X}+1}\) Với x > 0
1) Rút gọn P
2) Tìm x \(\in\) Z để P \(\in\) Z
3) So sánh P với \(\dfrac{1}{2}\)
4) Tìm các giá trị của x để P \(\in\) Z
1: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
2: Để P là số nguyên thì \(2\sqrt{x}+2⋮2\sqrt{x}\)
\(\Leftrightarrow2\sqrt{x}=2\)
hay x=1(nhận)
3: \(P-\dfrac{1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}-\dfrac{1}{2}=\dfrac{2\sqrt{x}+2-\sqrt{x}}{2\sqrt{x}}=\dfrac{\sqrt{x}+2}{2\sqrt{x}}>0\)
=>P>1/2
Cho:
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}-1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a,Rút gọn A
b,Tìm x \(\in\)Z để \(A\in Z\)
1. A = \(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
a) rút gọn
b) tìm x để A <-1
2. Cho A = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x-2\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+3}{x-1}-\dfrac{2}{\sqrt{x}+1}\right)\)
a) Rút gọn
b) tìm x \(\in\) Z để A \(\in\) Z
1. a) \(A=\left(\dfrac{\sqrt{x}-1+x-\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}\right).\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)ĐK x\(\ne\)0,1
\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(x-1\right)}=\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)
b) A<-1 <=> \(\dfrac{2\sqrt{x}}{x-\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}+1< 0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}+x-\sqrt{x}}{x-\sqrt{x}}< 0\)\(\Leftrightarrow\dfrac{x+\sqrt{x}}{x-\sqrt{x}}< 0\)
\(\Leftrightarrow x-\sqrt{x}< 0\) (vì \(x+\sqrt{x}>0\left(\forall x>0\right)\))
\(\Leftrightarrow x< \sqrt{x}\Leftrightarrow x^2< x\Leftrightarrow x^2-x< 0\)
\(\Leftrightarrow x\in\left(0;1\right)\Leftrightarrow0< x< 1\)
A=\(\dfrac{4\sqrt{x}+6}{\sqrt{x}}\)
a,tìm x\(\in Z,để\) A\(\in Z\)
đk x khác 0
\(A=4+\dfrac{6}{\sqrt{x}}\Rightarrow\sqrt{x}\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Cho bt: K = \(\left(1-\dfrac{4\sqrt{\text{x}}}{\text{x}-1}+\dfrac{1}{\sqrt{\text{x}}-1}\right):\dfrac{\text{x}-2\sqrt{\text{x}}}{\text{x}-1}\)
a) Rút gọn K
b) Tìm x \(\in\) z để K \(\in\) z
c) Tìm x để K âm
d ) Tìm x để K < \(-\)2
a) đkxđ x≥0 , x ≠1
\(K=\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
= \(\dfrac{x-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)b)
\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2-1}{\sqrt{x}-2}=1-\dfrac{1}{\sqrt{x}-2}\)
để K ∈ z thì \(\dfrac{-1}{\sqrt{x}-2}\) nguyên
=> √x -2 ∈ Ư(-1)={-1;1}
=> x ∈ {1; 9}
vậy ...
Cho bt: K = \(\left(1-\dfrac{4\sqrt{\text{x}}}{\text{x}-1}+\dfrac{1}{\sqrt{\text{x}}-1}\right):\dfrac{\text{x}-2\sqrt{\text{x}}}{\text{x}-1}\)
a) Rút gọn K
b) Tìm x \(\in\) z để K \(\in\) z
c) Tìm x để K âm
d ) Tìm x để K < \(-\)2
a: \(=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
b: Để K là số nguyên thì \(\sqrt{x}-2-1⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)
hay x=9
c: Để K là số âm thì \(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}< 0\)
=>4<x<9
Cho biểu thức
A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)-\(\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tính giá trị của A khi x = 4 - \(2\sqrt{3}\)
c) Tìm x để A = \(\dfrac{1}{2}\)
d) Tìm x để A < 1
e) Tìm x \(\in\) Z để A nhận giá trị nguyên
f) Tìm GTNN của A