Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Trí Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 7:01

\(a,\Leftrightarrow9x^2=-36\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)=0\\ \Leftrightarrow\left(3-x\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x^2-x-2x^2+3x+2=0\\ \Leftrightarrow2x=-2\Leftrightarrow x=-1\\ d,\Leftrightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=0\\ \Leftrightarrow-3\left(4x-3\right)=0\\ \Leftrightarrow x=\dfrac{3}{4}\\ e,\Leftrightarrow\dfrac{1}{3}x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ f,\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Hồ Thùy Linh
Xem chi tiết
Kim Chi
Xem chi tiết
Trần Minh Hoàng
28 tháng 5 2021 lúc 19:33

Để pt có 2 nghiệm thì \(\Delta'=m^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).

Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\).

Ta có \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\left(TM\right)\end{matrix}\right.\).

Vậy m = -2.

Kim Chi
28 tháng 5 2021 lúc 19:30

Mn ơi giúp mình với ạ❤

missing you =
28 tháng 5 2021 lúc 19:43

 bổ sung đề: \(x^2-2mx+4=0\)(1)

\(\Delta'=\left(-m\right)^2-4=m^2-4\)

để pt (1) có 2 nghiệm x1,x2 khi \(\Delta'>0< =>m^2-4>0\)

\(< =>\left(m-2\right)\left(m+2\right)>0\)

<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)thì pt (1) có 2 nghiệm x1,x2

theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=4\end{matrix}\right.\)

có \(\left(x1+1\right)^2+\left(x2^{ }+1\right)^2=2\)

\(< =>x1^2+2x1+1+x2^2+2x2+1-2=0\)

\(< =>\left(x1+x2\right)^2-2x1x2+2\left(x1+x2\right)=0\)

\(< =>2m^2-2.4+2.2m=0\)

\(< =>2m^2+4m-8=0\)

\(\Delta1=4^2-4\left(-8\right)2=80>0\)

\(m1=\dfrac{-4+\sqrt{80}}{4}=-1+\sqrt{5}\)(loại)

m2=\(\dfrac{-4-\sqrt{80}}{4}=-1-\sqrt{5}\)(TM)

vậy...

Minki 2k7
Xem chi tiết
nguyen abc
Xem chi tiết
Nguyễn My
Xem chi tiết
Lê Thị Thục Hiền
16 tháng 6 2021 lúc 14:13

Tự luận hay trắc nghiệm?

Lucchiki
Xem chi tiết
Trần Mạnh
18 tháng 2 2021 lúc 21:06

 a) 3x2 – 7x + 2

\(=3x^2-6x-x+2\)

\(=\left(3x^2-6x\right)-\left(x-2\right)\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

 b) a(x2 + 1) – x(a2 + 1)

\(=ax^2+a-\left(a^2x+x\right)\)

\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)

.......?

 

 

 

 

Nguyễn Lê Phước Thịnh
18 tháng 2 2021 lúc 21:10

a) Ta có: \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=x^2a+a-a^2x-x\)

\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)

\(=xa\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(xa-1\right)\)

c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)

\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)

\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)

I love BTS
Xem chi tiết
Hà Hoàng Thịnh
12 tháng 6 2018 lúc 19:18

a) \(\left(\frac{1}{7}x-\frac{2}{3}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x-\frac{2}{3}=0\\-\frac{1}{5}x+\frac{3}{5}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x=\frac{2}{3}\\-\frac{1}{5}x=-\frac{3}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{14}{3}\\x=3\end{cases}}\)

b)\(\frac{1}{10}x-\frac{4}{5}x+1=0\)

\(\Leftrightarrow x.\left(\frac{1}{10}-\frac{4}{5}\right)+1=0\)

\(\Rightarrow-\frac{7}{10}x=-1\)

\(\Rightarrow x=\frac{10}{7}\)

c)\(\left(2x-\frac{1}{3}\right).\left(5x+\frac{2}{7}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=0\\5x+\frac{2}{7}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\5x=-\frac{2}{7}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-\frac{2}{35}\end{cases}}\)

ARIFYCA
12 tháng 6 2018 lúc 19:39

a, (1/7 . x - 2/3) . (-1/5 . x + 3/5) = 0

Suy ra : 1/7 .x -2/3 = 0 hoặc -1/5 .x + 3/5 =0

Vậy : 1/7 .x = 2/3 hoặc -1/5 .x = 3/5

         x =2/3 : 1/7 hoặc x = 3/5 : (-1/5)

        x = 14/3 hoặc x = -3

b, 1/10 .x - 4/5 .x + 1 =0

   x . (1/10 - 4/5) + 1 = 0

   x . (-7/10) + 1 = 0

   x . -7/10 =0 +1 = 1

   x = 1 : (-7/10)

   x = -10/7

c, (2x - 1/3 ) . (5x +2/7) = 0

Suy ra : 2x - 1/3 = 0 hoặc 5x + 2/7 = 0

Vậy : 2x = 1/3 hoặc 5x = 2/7

         x = 1/3 : 2 hoặc x = 2/7 : 5

         x = 1/6 hoặc x = 2/35

  

ARIFYCA
12 tháng 6 2018 lúc 19:41

cái chỗ x = -3 bạn sửa lại là 3 nha , mk nhấn nhầm

Trần Hà Lan
Xem chi tiết