Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia An
Xem chi tiết
Hồng Phúc
20 tháng 1 2021 lúc 12:44

\(\left\{{}\begin{matrix}x+y=a\\ax+2y=0\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(a\ne2\)

hà nguyễn
Xem chi tiết
halo
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 14:38

a. Bạn tự giải.

b.

\(\left\{{}\begin{matrix}ax-2y=a\\-4x+2y=2a+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ax-2y=a\\\left(a-4\right)x=3a+2\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(a-4\ne0\Leftrightarrow a\ne4\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{3a+2}{a-4}\\y=\dfrac{a^2+3a}{a-4}\end{matrix}\right.\)

\(x-y=1\Leftrightarrow\dfrac{3a+2}{a-4}-\dfrac{a^2+3a}{a-4}=1\)

\(\Leftrightarrow\dfrac{2-a^2}{a-4}=1\Leftrightarrow2-a^2=a-4\)

\(\Leftrightarrow a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\)

Trần Việt Hoàng
Xem chi tiết
Tran Le Khanh Linh
5 tháng 4 2020 lúc 10:46

a) *)Để hệ đã cho vô nghiệm \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)

\(\Rightarrow\hept{\begin{cases}\frac{m+1}{5}=\frac{3}{-2}\\\frac{m+1}{5}\ne\frac{5}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-2m-1=15\\3m+3\ne25\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{-17}{2}\\m\ne\frac{22}{3}\end{cases}}}\)

*) Để hệ có nghiệm duy nhất 

\(\Rightarrow\frac{a}{a'}\ne\frac{b}{b'}\Rightarrow\frac{m+1}{5}\ne\frac{3}{-2}\)

\(\Leftrightarrow-2m-2\ne15\)

\(\Leftrightarrow m\ne\frac{-17}{2}\)

b) Để hpt có nghiệm duy nhất \(\hept{\begin{cases}m\ne\frac{-17}{2}\\x+y=5\end{cases}}\)

Thay x=5-y vào hpt ta có \(\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\5\left(5-y\right)-2y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\25-7y=3\end{cases}\Leftrightarrow\hept{\begin{cases}m=\frac{44}{13}\\y=\frac{22}{7}\end{cases}}}\)

Vậy \(m=\frac{44}{13}\)thỏa mãn điều kiện

Khách vãng lai đã xóa
Lương Tấn	Sang
Xem chi tiết

Cho hệ pt: \(\left\{{}\begin{matrix}x+2y=5\\ax+3y=a\end{matrix}\right.\) (1)

(1) vô nghiệm ⇔ \(\dfrac{1}{a}\) = \(\dfrac{2}{3}\) \(\ne\) \(\dfrac{5}{a}\) 

                       ⇒ a = \(\dfrac{3}{2}\) 

(1) có nghiệm duy nhất ⇔ \(\dfrac{1}{a}\) \(\ne\) \(\dfrac{2}{3}\) ⇒ \(a\) \(\ne\) 1 : \(\dfrac{2}{3}\) ⇒ \(a\ne\) \(\dfrac{3}{2}\)

Tư Cao Thủ
Xem chi tiết
Tran Le Khanh Linh
27 tháng 4 2020 lúc 19:33

y=2x hệ \(\Leftrightarrow\hept{\begin{cases}x-2x=a\\7x-2\cdot2x=5a-1\end{cases}\Leftrightarrow\hept{\begin{cases}-x=a\\3x=5a-1\end{cases}\Leftrightarrow}\hept{\begin{cases}-x=a\\3\cdot\left(-a\right)=5a-1\left(1\right)\end{cases}}}\)

(1) <=> \(5a+3a-1=0\)

<=> \(x=\frac{1}{8}\)

Vậy \(x=\frac{1}{8}\)

Khách vãng lai đã xóa
Bảo Ngọc Trần
Xem chi tiết
Akai Haruma
12 tháng 5 2021 lúc 0:42

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} ax-2y=a\\ y=a+1+2x\end{matrix}\right.\Rightarrow ax-2(a+1+2x)=a\)

\(\Leftrightarrow x(a-4)=3a+2(*)\)

Để hệ pt đã cho có nghiệm $(x,y)$ duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất

Điều này xảy ra khi $a-4\neq 0\Leftrightarrow a\neq 4$

 

Tú72 Cẩm
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2023 lúc 13:53

a: \(\left\{{}\begin{matrix}ax+y=2a\\x-a=1-ay\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}ax+y=2a\\x+ay=a+1\end{matrix}\right.\)

Khi a=2 thì hệ sẽ là \(\left\{{}\begin{matrix}2x+y=4\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=6\end{matrix}\right.\)

=>-3y=-2 và x+2y=3

=>y=2/3 và x=3-2y=3-4/3=5/3

2:

a: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{a}{1}< >\dfrac{1}{a}\)

=>a^2<>1

=>a<>1 và a<>-1

Để hệ có vô số nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}=\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a=2a

=>a=1

Để hệ vô nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}< >\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a<>2a

=>a=-1

Đỗ Tân Huy
Xem chi tiết
Nguyễn Thị BÍch Hậu
15 tháng 6 2015 lúc 16:43

a, tự giải nha. k giải đc thì liên hệ mình

b)  từ (1) => \(x=\frac{a+2y}{a}=1+\frac{2y}{a}\)(3)

thay (3) vào (2) ta có: \(-2.\frac{a+2y}{a}+y=a+1\Rightarrow-2a-4y+ay-a^2-a=0\Leftrightarrow\left(a-4\right)y-a^2-3a=0\left(4\right)\)

=> hệ có nghiệm duy nhất <=> (4) có nghiệm duy nhất <=> a-4 khác 0 <=> a khác 4

(4) <=> \(y=\frac{a\left(a+3\right)}{a-4}\Rightarrow x=1+2\frac{a\left(a+3\right)}{a-4}.\frac{1}{a}=\frac{a-4+2a+6}{a-4}=\frac{3a+2}{a-4}\)

xy=1 <=> \(\frac{\left(a^2+3a\right)\left(3a+2\right)}{\left(a-4\right)^2}=1\Leftrightarrow3a^3+11a^2+6a=a^2-8a+16\Leftrightarrow3a^3+10a^2+14a-16=0\)

bạn tự giải và kết luận nha