Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Anh
Xem chi tiết
Shinichi Kudo
8 tháng 3 2022 lúc 19:29

\(B=\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)

\(2B=\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)

\(B-2B=\)\(\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)\(-\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)

\(-B=\dfrac{1-2^{2009}}{1-2^{2009}}\)

B=-1

Vampire Princess
Xem chi tiết
Thanh Tùng DZ
26 tháng 5 2018 lúc 21:16

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

Thanh Tùng DZ
26 tháng 5 2018 lúc 21:19

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

TR ᗩ NG ²ᵏ⁶
Xem chi tiết
long
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2022 lúc 18:06

\(\Leftrightarrow\dfrac{x+1}{2010}+1+\dfrac{x+2}{2009}+1+...+\dfrac{x+2009}{2}+1+\dfrac{x+2010}{1}+1=0\)

=>x+2011=0

hay x=-2011

Monkey D .Luffy
Xem chi tiết
Nguyễn Hiền My
6 tháng 4 2017 lúc 16:20

ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)

B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)

ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)

vậy A<B

Ly Ly
Xem chi tiết
Hiện thực khốc liệt :D
30 tháng 6 2021 lúc 16:19

`A=\sqrt{1+2008^2+2008^2/2009^2}+2008/2009`

`=\sqrt{1+2008^2+2.2008+2008^2/2009^2-2.2008}+2008/2009`

`=\sqrt{(2008+1)^2-2.2008+2008^2/2009^2}+2008/2009`

`=\sqrt{2009-2.2008/2009*2009+2008^2/2009^2}+2008/2009`

`=\sqrt{(2009-2008/2009)^2}+2008/2009`

`=|2009-2008/2009|+2008/2009`

`=2009-2008/2009+2008/2009`

`=2009` là 1 số tự nhiên

Ly Ly
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 21:29

Đặt \(2008=a\)

\(\Leftrightarrow A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-\dfrac{2a\left(a+1\right)}{a+1}+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2009\left(đpcm\right)\)

Nguyễn Hoàng Anh
Xem chi tiết
Minh Hiếu
8 tháng 5 2022 lúc 19:47

\(=\dfrac{2\left(1+2+2^2+...+2^{2008}\right)-\left(1+2+2^2+...+2^{2008}\right)}{1-2^{2009}}\)

\(=\dfrac{\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)}{1-2^{2009}}\)

\(=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)

Black
Xem chi tiết
 Mashiro Shiina
20 tháng 12 2017 lúc 14:13

1)\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2008+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)

\(\dfrac{A}{B}=\dfrac{1}{2009}\)

2) \(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)

\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(A=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)