Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Vân Anh
Xem chi tiết
Phùng Gia Bảo
2 tháng 11 2019 lúc 18:27

1.

Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)

Áp dụng bất đẳng thức Côsi cho 2 số dương

\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)

\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)

Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)

2.

\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)

Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5

\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5

Khách vãng lai đã xóa
Quách Minh Hưng
Xem chi tiết
Big City Boy
Xem chi tiết
Minh Hiếu
14 tháng 10 2021 lúc 19:53

\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)

Áp dụng BĐT Svac

\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\text{≥}\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

Vì a+b+c=6 

\(\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{6^2}{12}=\dfrac{36}{12}=3\)

Còn lại thì bạn tự làm tiếp nha

Trần Thị Diệu
14 tháng 10 2021 lúc 20:05

Bài này hình như tính giá trị biểu thức của abc,2 nhỉ

Lăng
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 13:16

\(A=a^2+\dfrac{1}{16a^2}+b^2+\dfrac{1}{16b^2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

\(A\ge2\sqrt{\dfrac{a^2}{16a^2}}+2\sqrt{\dfrac{b^2}{16b^2}}+\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)

\(A\ge1+\dfrac{15}{32}\left(\dfrac{4}{a+b}\right)^2\ge1+\dfrac{15}{32}.4\)

 

Lê Thanh Ngọc
Xem chi tiết
Củ Lạc Giòn Tan
Xem chi tiết
Ngyen van duy
9 tháng 3 2017 lúc 22:20

Gia tri nho nhat lon hon 0 la 1

ma nguoi ta khong yeu cau a,b,c,d khac nhau

suy ra gtnn=1

Ko cần bít
Xem chi tiết
Nguyễn Hưng Phát
16 tháng 7 2018 lúc 20:28

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:

\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)

\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)

\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)

\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)

Nên GTNN của P là 17 đạt được khi a=b=2

dia fic
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 16:19

Lời giải:

Áp dụng BĐT AM-GM: 

$(a^2+b^2)^2=(a+b)^2\leq 2(a^2+b^2)\Rightarrow a^2+b^2\leq 2$

Tiếp tục áp dụng BĐT AM-GM:

\(P=a^4+b^4+\frac{2020}{(a^2+b^2)^2}\geq \frac{(a^2+b^2)^2}{2}+\frac{2020}{(a^2+b^2)^2}\). Ta có:

\(\frac{(a^2+b^2)^2}{2}+\frac{8}{(a^2+b^2)^2}\geq 2\sqrt{\frac{(a^2+b^2)^2}{2}.\frac{8}{(a^2+b^2)^2}}=4\)

\(\frac{2012}{(a^2+b^2)^2}\geq \frac{2012}{2^2}=503\) do $a^2+b^2\leq 2$

Do đó: $P\geq \frac{(a^2+b^2)^2}{2}+\frac{2020}{(a^2+b^2)^2}\geq 4+503=507$

Vậy $P_{\min}=507$. Giá trị này đạt tại $a=b=1$

 

MARKTUAN
Xem chi tiết