Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Yết
Xem chi tiết
Thiên Yết
Xem chi tiết
Kamato Heiji
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 9:42

a: ĐKXĐ: 2*sin x+1<>0

=>sin x<>-1/2

=>x<>-pi/6+k2pi và x<>7/6pi+k2pi

b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)

mà 1+cosx>=0

nên 2-cosx>=0

=>cosx<=2(luôn đúng)

c ĐKXĐ: tan x>0

=>kpi<x<pi/2+kpi

d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)

=>cos(x-pi/4)<>1/2

=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi

=>x<>7/12pi+k2pi và x<>-pi/12+k2pi

e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi

=>x<>5/6pi+kpi và x<>kpi-pi/4

f: ĐKXĐ: cos^2x-sin^2x<>0

=>cos2x<>0

=>2x<>pi/2+kpi

=>x<>pi/4+kpi/2

 

Lê Thúy Kiều
Xem chi tiết
Hồng Phúc
25 tháng 6 2021 lúc 9:40

1. \(D=R\)

2. \(sinx\ne0\Leftrightarrow x\ne k\pi\Rightarrow D=R\backslash\left\{k\pi|k\in R\right\}\)

3. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+\dfrac{k\pi}{2}|k\in R\right\}\)

4. \(cos\left(x+\dfrac{\pi}{4}\right)\ne0\Leftrightarrow x+\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+k\pi|k\in R\right\}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 5 2019 lúc 5:08

Đáp án A

Nguyễn Linh Chi
Xem chi tiết
vvvvvvvv
Xem chi tiết
Diệu Ngọc
Xem chi tiết
Trần Ái Linh
6 tháng 8 2021 lúc 18:29

1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`

Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`

2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`

`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`

3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2018 lúc 17:14

Đáp án C

hạ băng
Xem chi tiết
Hồng Phúc
15 tháng 8 2021 lúc 13:07

a, \(y=sin^2x-2sinx+3cos^2x\)

\(=sin^2x-2sinx+3\left(1-sin^2x\right)\)

\(=3-2sinx-2sin^2x\)

Đặt \(sinx=t\left(t\in\left[0;1\right]\right)\)

\(\Rightarrow y=f\left(t\right)=3-2t-2t^2\)

\(\Rightarrow y_{min}=min\left\{f\left(0\right);f\left(1\right)\right\}=-1\)

\(y_{max}=max\left\{f\left(0\right);f\left(1\right)\right\}=3\)

Hồng Phúc
15 tháng 8 2021 lúc 13:33

b, \(y=sinx-cosx+sin2x+5\)

\(=sinx-cosx-\left(sinx-cosx\right)^2+6\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-t^2+t+6\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=4-\sqrt{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=6\)

Hồng Phúc
15 tháng 8 2021 lúc 13:42

c, \(y=sinx-cosx+sinx.cosx-3\)

\(=sinx-cosx-\dfrac{1}{2}\left(sinx-cosx\right)^2-\dfrac{5}{2}\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t-\dfrac{5}{2}\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-\dfrac{7+2\sqrt{2}}{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-2\)