(2/3)^3 . (3/2)^5
5) (3-1/4+2/3) - (5-1/3-6/5) - (6-7/4+3/2) 6) (6-2/3+1/2) - (5+5/3-3/2)-(3-7/3+5/2)
7) (5/3-3/7+9)-(2+5/7-2/3)+(8/7-4/3-10) 8) (8-9/4+2/7)-(-6-3/7+5/4)-(3+2/4-9/7 pls help me
5: \(=3-\dfrac{1}{4}+\dfrac{2}{3}-5+\dfrac{1}{3}+\dfrac{6}{5}-6+\dfrac{7}{4}-\dfrac{3}{2}\)
\(=3-5-6+\dfrac{-1}{4}+\dfrac{7}{4}+\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{6}{5}-\dfrac{3}{2}\)
\(=-8+\dfrac{3}{2}+1+\dfrac{-3}{10}\)
\(=-7+\dfrac{15-3}{10}=-7+\dfrac{6}{5}=-\dfrac{29}{5}\)
6: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=6-5-3-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}+\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
7: \(=\dfrac{5}{3}-\dfrac{3}{7}+9-2-\dfrac{5}{7}+\dfrac{2}{3}+\dfrac{8}{7}-\dfrac{4}{3}-10\)
\(=9-2-10+\dfrac{5}{3}+\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{-3}{7}-\dfrac{5}{7}+\dfrac{8}{7}\)
=-3+1
=-2
8: \(=8-\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)
\(=8+6-3+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{9}{7}-1-\dfrac{2}{4}\)
\(=11+2-1-\dfrac{1}{2}\)
=11+1/2
=11,5
(3-1/4+2/3) - (5-1/3-6/5) - (6-7/4+3/2) (6-2/3+1/2) - (5+5/3-3/2)-(3-7/3+5/2)
(5/3-3/7+9)-(2+5/7-2/3)+(8/7-4/3-10) (8-9/4+2/7)-(-6-3/7+5/4)-(3+2/4-9/7 )
mọi người ơi giúp mik với ạ
a,1/3 .(x-2/5)=3/4 b, 7/3:(x-2/3)=4/5 c,1/3.(x-2/5)=4/5 d, 2/3.(x-1/2)-1/4.(x-2/5)=7/3 e,3/7 .(x-2/3)+1/2=5/4.(x-2) f,1/2.(x-3)+1/3.(x-4)+1/4.(x-5)=1/5 g,[2/3.(x-1/2)-4/5]:(x-1/3)=21/5 h, {x-[1/2.(x-3)+11/5]}:(x-1/2)=3/5 i,x.(x-2/5)-(x+2).x+11/4=4/3
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144
A= 2+2^2+2^3+...+2^19+2^20
b=2+2^3+2^5+...2^97+2^99
C=5+5^2+5^3+...+5^50
D=1+3+3^2+3^3+...+3^100
\(2A-A=\left(2^2+2^3+...+2^{21}\right)-\left(2+2^2+...+2^{20}\right)\)
\(A=2^{21}-2\)
B tương tự câu A
\(5C-C=\left(5^2+5^3+...+5^{51}\right)-\left(5+5^2+...+5^{50}\right)\)
\(C=\dfrac{5^{51}-5}{4}\)
\(3D-D=3+3^2+...+3^{101}-\left(1+3+...+3^{100}\right)\)
\(D=\dfrac{3^{101}-1}{2}\)
\(A=2^1+2^2+2^3+...+2^{20}\)
\(2\cdot A=2^2+2^3+2^4+...+2^{21}\)
\(A=2^{21}-2\)
\(B=2^1+2^3+2^5+...+2^{99}\)
\(4\cdot B=2^3+2^5+2^7+...+2^{101}\)
\(B=\)\(\left(2^{101}-2\right):3\)
\(C=5^1+5^2+5^3+...+5^{50}\)
\(5\cdot C=5^2+5^3+5^4+...+5^{51}\)
\(C=(5^{51}-5):4\)
\(D=3^0+3^1+3^2+...+3^{100}\)
\(3\cdot D=3^1+3^2+3^3+...+3^{101}\)
\(D=(3^{101}-1):2\)
Rút gọn : a . P = 3+2√3 / √3 + 2+√2 / √2+1 - ( √2 + √3 ) ; b. N = ( 1 - 5 + √5 / 1 + √5 ) ( 5 - √5 / 1- √5 - 1 ) ; c. Q = ( 5 - 2√5 / 2 - √5 - 2 ) ( 3+3 √5 / 3 + √5 - 2 ). Giúp mik vs ạ
a: \(P=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{1}-\sqrt{3}-\sqrt{2}\)
\(=2+\sqrt{3}+2-\sqrt{2}-\sqrt{3}-\sqrt{2}\)
\(=4-2\sqrt{2}\)
b: \(N=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\sqrt{5}\right)\left(-\sqrt{5}-1\right)\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)
a) \(P=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)
\(P=\dfrac{\sqrt{3}\cdot\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\cdot\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(P=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-\sqrt{3}\)
\(P=2\)
b) \(N=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(N=\left[1-\dfrac{\sqrt{5}\left(1+\sqrt{5}\right)}{1+\sqrt{5}}\right]\left[1+\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\)
\(N=\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)\)
\(N=1^2-\left(\sqrt{5}\right)^2\)
\(N=-4\)
c) \(Q=\left(\dfrac{5+2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
\(Q=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+2\right]\left[\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}-2\right]\)
\(Q=\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\)
\(Q=\left(\sqrt{5}\right)^2-2^2\)
\(Q=1\)
Tính:
5 – 1 = … | 4 – 1 = … | 3 – 1 = … | 2 + 3 = …. |
5 – 2 = … | 4 – 2 = … | 3 – 2 = … | 3 + 2 = …. |
5 – 3 = …. | 4 – 3 = … | 2 – 1 = … | 5 – 2 = …. |
5 – 4 = …. | 5 – 3 = …. |
Lời giải chi tiết:
5 – 1 = 4 | 4 – 1 = 3 | 3 – 1 = 2 | 2 + 3 = 5 |
5 – 2 = 3 | 4 – 2 = 2 | 3 – 2 = 1 | 3 + 2 = 5 |
5 – 3 = 2 | 4 – 3 = 1 | 2 – 1 = 1 | 5 – 2 = 3 |
5 – 4 = 1 | 5 – 3 = 2 |
5-1=4 4-1=3 3-1=2 2+3=5
5-2=3 4-2=2 3-2=1 3+2=5
5-3=2 4-3=1 2-1=1 5-2=3
5-4=1 5-3=2
Tính:
5 – 1 = 4 | 4 – 1 = 3 | 3 – 1 = 2 | 2 + 3 = 5 |
5 – 2 = 3 | 4 – 2 = 2 | 3 – 2 = 1 | 3 + 2 = 5 |
5 – 3 = 2 | 4 – 3 = 1 | 2 – 1 = 1 | 5 – 2 = 3 |
5 – 4 = 1 | 5 – 3 = 2 |
bài 1:
1/4 + 2/3 2/7 + 2/3 2/5 + 1/3 2/3 + 1/2 1/3 + 3/5 4/5 + 1/3
1/8 + 3/4 1/36 + 5/12 1/3 + 1/6 + 1/18.
bài 2:
15/16 - 3/16 17/18 - 5/6 3/4 - 4/9 1/2 - 2/5 5/6 - 3/10 3-1/3
4/5 - 1/10 5/2 - 1 5/8 - 2/5.
\(x^3=\left(\sqrt[3]{5+2\sqrt{6}}+\sqrt[3]{5-2\sqrt{6}}\right)^3=\sqrt[3]{5+2\sqrt{6}}^3\)
\(+3\sqrt[3]{\left(5+2\sqrt{6}\right)^2}.\sqrt[3]{5-2\sqrt{6}}+3\sqrt[3]{5+2\sqrt{6}}.\sqrt[3]{\left(5-2\sqrt{6}\right)^2}+\sqrt[3]{5-2\sqrt{6}}^3\)
\(=5+2\sqrt{6}+3\sqrt[3]{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}.\sqrt[3]{5+2\sqrt{6}}\)
\(+3\sqrt[3]{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}.\sqrt[3]{5-2\sqrt{6}}+5-2\sqrt{6}\)
\(=5+5+3\sqrt[3]{\left(25-4.6\right)}.\sqrt[3]{5+2\sqrt{6}}+3\sqrt[3]{\left(25-4.6\right)}.\sqrt[3]{5-2\sqrt{6}}\)
\(=10+ 3\sqrt[3]{5+2\sqrt{6}}+3\sqrt[3]{5-2\sqrt{6}}\)
p/s : có bạn hỏi nên mình đăng , các bạn đừng report nhé
Trục căn thức ở mẫu.
1) 5/√5 ; 3/2√3 ; 5/√7 ; 2√3/5√7 ; 5/2√3
2) 1/√3 ; 2/√3 + 1 ; 3/√5 - 1 ; 12/√5 - √3 ; 4√3 - 2/7 × √2
1)
\(\dfrac{5}{\sqrt{5}}=\dfrac{5\sqrt{5}}{5}\sqrt{5}\)
\(\dfrac{3}{2\sqrt{3}}=\dfrac{3\sqrt{3}}{2\sqrt{3}}=\sqrt{\dfrac{3}{2}}\)
\(\dfrac{5}{\sqrt{7}}=\dfrac{5\sqrt{7}}{\sqrt{49}}=\left(\dfrac{5}{7}\right)\sqrt{7}\)
1:
\(\dfrac{2\sqrt{3}}{5\sqrt{7}}=\dfrac{2\sqrt{21}}{35}\)
\(\dfrac{5}{2\sqrt{3}}=\dfrac{5\sqrt{3}}{6}\)
2: \(\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
\(\dfrac{2}{\sqrt{3}+1}=\sqrt{3}-1\)
\(\dfrac{3}{\sqrt{5}-1}=\dfrac{3+3\sqrt{5}}{4}\)
\(\dfrac{12}{\sqrt{5}-\sqrt{3}}=6\left(\sqrt{5}+\sqrt{3}\right)=6\sqrt{5}+6\sqrt{3}\)
1.Tính tổng
a) S = 1 + 2 + 2^2 + 2^3 + ... + 2^2022
b) S = 3 + 3^2 + 3^3 + ... + 3^2022
c) S = 4 + 4^1 + 4^2 + 4^3 + ... + 4^2022
d) S = 5 + 5^2 + 5^3 + ... + 5^2022
2.Tính tổng A = 1^2 + 2^2 + 3^3 + ... + 20^2
3.Tìm X
a) 2^X + 2^X+3 = 5^2
b) (X - 5)^2022 = (X - 5)^2021
c) (2 . X + 1)^3 = 9 . 81
4.Tìm tập hợp các số tự nhiên X, biết rằng 5^2X-1 thỏa mãn điều kiện 100 < 5^2X-1 < 5^6
5.So sánh
a) 3^2N và 2^3N
b)199^20 và 2003^15
5:
a: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(\left(2^{3n}\right)=\left(2^3\right)^n=8^n\)
=>\(3^{2n}>2^{3n}\)
b: \(199^{20}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=\left(2003^3\right)^5=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
4: \(100< 5^{2x-1}< 5^6\)
mà \(25< 100< 125\)
nên \(125< 5^{2x-1}< 5^6\)
=>3<2x-1<6
=>4<2x<7
=>2<x<7/2
mà x nguyên
nên x=3