\(^2\)
Tính:
a) 1/x(x+1)+1/(x+1)(x+3)+...+1/(x+99)(x+100)
b) 1/(x-1)(x-2)+2/(x-2)(x-3)-3/(x-3)(x-1)
(2+4+6+...+100) - (1+3+5+...+99) = ?
1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100 = ?
3 x 4 + 4 x 5 + 5 x 6 + ... + 149 x 150 = ?
1 + (1 + 2) + ( 1 + 2 + 3) + (1 + 2 + 3 + 4) + ....... + (1 + 2 + 3 + ... + 99)
----------------------------------------------------------------------------------------------------------- ( gạch ngang phân số )
1 x 99 + 2.98 + 3.97 + ...... + 99 x 1
Tính:
a) \((6{x^2} - 2x + 1):(3x - 1)\);
b) \((27{x^3} + {x^2} - x + 1):( - 2x + 1)\);
c) \((8{x^3} + 2{x^2} + x):(2{x^3} + x + 1)\);
d) \((3{x^4} + 8{x^3} - 2{x^2} + x + 1):(3x + 1)\)
Bài 2:Tính:
a,(x- 6y) (x+6y)
b,(x-2) (x2 +2x+4)
Bài 3:Rút gọn:
a,(x+1)2 - (x-1)2 - 3 (x+1) (x-1)
b,(x - 1)3 - ( x-1) 3 + 6 (x-1) (x+1)
Bài 2:
a) \(=x^2-36y^2\)
b) \(=x^3-8\)
Bài 3:
a) \(=x^2+2x+1-x^2+2x-1-3x^2+3=-3x^2+4x+3\)
b) \(=6\left(x-1\right)\left(x+1\right)=6x^2-6\)
Thực hiện phép tính:
a) (1/x+x-2) : (1/x^2-x+1-3/x-1)
b) [x^2-2x+1/3x+(x+1)^2 - 1-2x^2+4x/x^3-1 + 1/x-1] : 2x/x^3+x
a: \(=\dfrac{x^2-2x+1}{x}:\dfrac{x-1-3x^2+3x-3}{\left(x-1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{x}\cdot\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{-2x^2+4x-4}\)
\(=\dfrac{\left(x-1\right)^3\cdot\left(x^2-x+1\right)}{-2x\left(x^2-2x+2\right)}\)
b: \(=\left[\dfrac{x^2-2x+1}{x^2+x+1}+\dfrac{2x^2-4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right]:\dfrac{2}{x^2+1}\)
\(=\dfrac{x^3-3x^2+3x+1+2x^2-4x+1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
\(=\dfrac{x^3+3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
= 1/1x2 + 1/2x3 + 1/3x4 ...... +1/9x10
= 1-1/2+1/2-1/3+1/3-1/4+........+1/9-1/10
=1-1/10=9/10
đặt A=1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
\(A=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+...+\frac{1}{9}\cdot\frac{1}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
đặt B=2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{99}{50}\)
Tính:
a) \(({x^3} + 1):({x^2} - x + 1)\);
b) \((8{x^3} - 6{x^2} + 5):({x^2} - x + 1)\).
a)
Vậy \(({x^3} + 1):({x^2} - x + 1) = x + 1\).
b)
Vậy \((8{x^3} - 6{x^2} + 5) = ({x^2} - x + 1)(8x + 2) + ( - 6x + 3)\)
1/Tìm x,biết:
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
b)1+2+3+4+...+x=820
c)3(x+1)=9.27
d)x+2x+3x+...+99x+100x=15150
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
f)3x+3x+1+3x+2=351
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
a) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5555\)
\(\Rightarrow x+x+1+x+2+x+3+...+x+100=5555\)
\(\Rightarrow101\cdot x+5050=5555\)
\(\Rightarrow101\cdot x=5555-5050\)
\(\Rightarrow101\cdot x=505\)
\(\Rightarrow x=505:101\)
\(\Rightarrow x=5\)
b) \(1+2+3+4+...+x=820\)
\(\Rightarrow\left(x+1\right)\cdot\left[\left(x-1\right):1+1\right]:2=820\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+1-1\right):2=820\)
\(\Rightarrow\left(x+1\right)\cdot x:2=820\)
\(\Rightarrow x\cdot\left(x+1\right)=820\cdot2\)
\(\Rightarrow x\cdot\left(x+1\right)=1640\)
Ta thấy: \(40\cdot41=1640\)
Vậy: \(x=40\)
Tính:
a)\(\dfrac{2x+4}{x^3-1}\)-\(\dfrac{2}{x+1}\)+\(\dfrac{x+2}{x^2+x+1}\)
b) \(\dfrac{x-1}{x^2-5x+6}\)-\(\dfrac{x-3}{x-2}\)+\(\dfrac{x-2}{x-3}\)
\(\dfrac{2x+4}{x^3-1}-\dfrac{2}{x-1}+\dfrac{x+2}{x^2+x+1}\\ =\dfrac{2x+4}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2}{x-1}+\dfrac{x+2}{x^2+x+1}\\ =\dfrac{2x+4}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{2x+4-2x^2-2x-2+x^2-x+2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{-x^2+x}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{-x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=-\dfrac{x}{x^2+x+1}\)
`a, 2/(x+1)` hay `2/(x-1)` cậu nhỉ?
`b,`
\(\dfrac{x-1}{x^2-5x+6}-\dfrac{x-3}{x-2}+\dfrac{x-2}{x-3}\\ =\dfrac{x-1}{\left(x-2\right)\left(x-3\right)}-\dfrac{x-3}{x-2}+\dfrac{x-2}{x-3}\\ =\dfrac{x-1}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)^2}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(x-2\right)^2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x-1-\left(x^2-6x+9\right)+x^2-4x+4}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{x-1-x^2+6x-9+x^2-4x+4}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{3x-6}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{3\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{3}{x-3}\)
Tính:
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1)\);
b) \((4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5)\);
c) \( - 3{x^2}(6{x^2} - 8x + 1)\);
d) \((4{x^2} + 2x + 1)(2x - 1)\);
e) \(({x^6} - 2{x^4} + {x^2}):( - 2{x^2})\);
g) \(({x^5} - {x^4} - 2{x^3}):({x^2} + x)\).
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);
b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);
c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) = - 3{x^2}.6{x^2} - - 3{x^2}.8x + - 3{x^2}.1\\ = - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} = - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);
d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);
e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ = - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} = - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);
g)
\(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)