Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tuân
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2022 lúc 14:27

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Nguyễn Việt Lâm
20 tháng 1 2022 lúc 14:48

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 8 2018 lúc 6:53

Đáp án C

Xét y = 2x3 – 3x2 + 1 

Ta có: y’ = 6x2 – 6x

ð y’ = 0 x = 0 hoặc x = 1

Ta có bảng biến thiên

Số nghiệm phương trình đã cho m = 2x3 – 3x2 + 1 

= Số giao điểm của đồ thị hàm số y = 2x3 – 3x2 + 1 và đường thẳng y = m

-> 0<m<1

 

 

 

 

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 21:28

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

Hưởng T.
Xem chi tiết
tran hong anh
23 tháng 7 2021 lúc 9:06

còn cái nịt

Nguyễn Thị My
Xem chi tiết
👁💧👄💧👁
5 tháng 8 2021 lúc 14:55

a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.

b) Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)

Mà \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.

Phạm Nguyễn Hà Chi
5 tháng 8 2021 lúc 15:18

a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)

                   \(=m^2+6m+9-4m\)

                   \(=m^2+2m+9\)

                   \(=m^2+2m+1+8\)

                   \(=\left(m+1\right)^2+8\)

Lại có:  \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)

Vậy phương trình luôn có 2 nghiêm phân biệt 

b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)

Theo bài ra:

 \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(m+3\right)^2-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m-6=0\)

\(\Leftrightarrow m^2+4m+3=0\)

\(\Leftrightarrow m^2+m+3m+3=0\)

\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)

\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức 

 

Xích U Lan
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2021 lúc 22:50

\(\Delta=\left(m+3\right)^2-4\left(m-1\right)=\left(m+1\right)^2+12>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m-1\end{matrix}\right.\)

\(x_1< -\dfrac{1}{4}< x_2\Leftrightarrow\left(x_1+\dfrac{1}{4}\right)\left(x_2+\dfrac{1}{4}\right)< 0\)

\(\Leftrightarrow x_1x_2+\dfrac{1}{4}\left(x_1+x_2\right)+\dfrac{1}{16}< 0\)

\(\Leftrightarrow m-1+\dfrac{1}{4}\left(m+3\right)+\dfrac{1}{16}< 0\)

\(\Leftrightarrow20m-3< 0\Rightarrow m< \dfrac{3}{20}\)

Nguyễn Tuấn
Xem chi tiết
Vũ Ngọc
Xem chi tiết
missing you =
15 tháng 11 2021 lúc 20:26

\(x^3-3\left(m+1\right)x^2+2mx+m+2=0\left(1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-3mx-2x-m-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2-x\left(3m+2\right)-m-2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-x\left(3m+2\right)-m-2=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)có\) \(3ngo\)  \(phân\) \(biệt\Leftrightarrow\left(2\right)\) \(có\) \(2\) \(ngo\) \(phân\) \(biệt\ne1\)

\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)\ne0\\\Delta>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{-3}{4}\\\left(3m+2\right)^2-4\left(-m-2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{-3}{4}\\9m^2+16m+12>0\left(luôn-đúng\right)\end{matrix}\right.\)

\(\Rightarrow m\ne\dfrac{-3}{4}\) \(thì\left(1\right)\) \(có\) \(3ngo\) \(phân\) \(biệt\)

\(do\left(2\right)\) \(\) \(có\) \(2\) \(ngo\) \(phân\) \(biệt\ne1\Rightarrow x3=1\)

\(\Rightarrow x1+x2=2\)

\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=3m+2\\x1x2=-m-2\end{matrix}\right.\)

\(\Rightarrow3m+2=2\Leftrightarrow m=0\left(tm\right)\)

 

 

 

 

 

Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 17:42

loading...