Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Ngọc

tìm m để pt có 3 nghiệm phân biệt x1,x2,x3

x^3-3(m+1)x^2+2mx+m+2=0

thỏa mãn: x1+x2=2x3

missing you =
15 tháng 11 2021 lúc 20:26

\(x^3-3\left(m+1\right)x^2+2mx+m+2=0\left(1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-3mx-2x-m-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2-x\left(3m+2\right)-m-2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-x\left(3m+2\right)-m-2=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)có\) \(3ngo\)  \(phân\) \(biệt\Leftrightarrow\left(2\right)\) \(có\) \(2\) \(ngo\) \(phân\) \(biệt\ne1\)

\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)\ne0\\\Delta>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{-3}{4}\\\left(3m+2\right)^2-4\left(-m-2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{-3}{4}\\9m^2+16m+12>0\left(luôn-đúng\right)\end{matrix}\right.\)

\(\Rightarrow m\ne\dfrac{-3}{4}\) \(thì\left(1\right)\) \(có\) \(3ngo\) \(phân\) \(biệt\)

\(do\left(2\right)\) \(\) \(có\) \(2\) \(ngo\) \(phân\) \(biệt\ne1\Rightarrow x3=1\)

\(\Rightarrow x1+x2=2\)

\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=3m+2\\x1x2=-m-2\end{matrix}\right.\)

\(\Rightarrow3m+2=2\Leftrightarrow m=0\left(tm\right)\)

 

 

 

 

 


Các câu hỏi tương tự
Lê vsbzhsjskskskssm
Xem chi tiết
Lại Huyền
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Đình Dũng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
đấng ys
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết