3-16x2
rút gọn biểu thức c,C=(5x+2)3+(5x-2)3-2(x-2)(x+2)
d,D=(4x-3)(16x2+12x+9)-(4x+3)(16x2-12x+9)
c: C=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2(x^2-4)
=250x^3+120x-2x^2+8
=250x^3-2x^2+120x+8
d: D=(4x)^3-3^3-(4x)^3-3^3
=64x^3-27-64x^3-27
=-54
c) \(C=\left(5x+2\right)^3+\left(5x-2\right)^3-2\left(x-2\right)\left(x+2\right)\)
\(=\left[\left(5x\right)^3+3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2+2^3\right]+\left[\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2-2^3\right]-2\left(x^2-4\right)\)
\(=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2x^2+8\)
\(=\left(125x^3+125x^3\right)+\left(150x^2-150x^2-2x^2\right)+\left(60x+60x\right)+\left(8-8+8\right)\)
\(=250x^3-2x^2+120x+8\)
d) \(D=\left(4x-3\right)\left(16x^2+12x+9\right)-\left(4x+3\right)\left(16x^2-12x+9\right)\)
\(=\left(4x\right)^3-3^3-\left[\left(4x\right)^3+3^3\right]\)
\(=64x^3-27-\left(64x^3+27\right)\)
\(=64x^3-27-64x^3-27\)
\(=-27-27\)
\(=-54\)
(4x+3)(x2-9)=(x+3)(16x2-9)
\(\left(4x+3\right)\left(x^2-9\right)=\left(x+3\right)\left(16x^2-9\right)\\ \left(4x+3\right)\left(x-3\right)\left(x+3\right)=\left(x+3\right)\left(4x-3\right)\left(4x+3\right)\\ \left(4x+3\right)\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(4x-3\right)\left(4x+3\right)=0\)
\(\left(4x+3\right)\left(x+3\right)\left(x-3-4x+3\right)=0\\ \left(4x+3\right)\left(x+3\right)\cdot\left(-3x\right)=0\\ \left[{}\begin{matrix}4x+3=0< =>x=-\dfrac{3}{4}\\x+3=0< =>x=-3\\-3x=0< =>x=0\end{matrix}\right.\)
=>(4x+3)(x-3)(x+3)-(x+3)(4x-3)(4x+3)=0
=>(4x+3)(x+3)(x-3-4x+3)=0
=>-3x(4x+3)(x+3)=0
=>\(x\in\left\{0;-\dfrac{3}{4};-3\right\}\)
\(\left(4x+3\right)\left(x^2-9\right)=\left(x+3\right)\left(16x^2-9\right)\)
\(\Leftrightarrow\left(4x+3\right)\left(x-3\right)\left(x+3\right)=\left(x+3\right)\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow\left(4x+3\right)\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(4x-3\right)\left(4x+3\right)=0\)
\(\Leftrightarrow\left(4x+3\right)\left(x+3\right)\left(x-3-4x+3\right)=0\)
\(\Leftrightarrow\left(4x+3\right)\left(x+3\right)\left(-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+3=0\\x+3=0\\-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-3\\x=0\end{matrix}\right.\)
(4x + 2)(4x – 2) bằng:
A. 4 x 2 + 4
B. 4 x 2 - 4
C. 16 x 2 + 4
D. 16 x 2 - 4
Tính các giới hạn sau lim x → - 1 x + 1 6 x 2 + 3 + 3 x
Giải các phương trình sau: 16 x 2 – 8 x + 1 = 4 ( x + 3 ) ( 4 x – 1 )
1)x^3-16x
2)x^4-2x^3
3)(2x-11)(x^2-1)
4)x^3-36x
5)2x+19
1)
x^3 -16x=0`
`<=>x(x^2 -16)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b)
`x^4 -2x^3=0`
`<=>x^3 (x-2)=0`
\(< =>\left[{}\begin{matrix}x^3=0\\x-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
3)
`(2x-11)(x^2 -1)=0`
\(< =>\left[{}\begin{matrix}2x-11=0\\x^2-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}2x=11\\x^2=1\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=1\\x=-1\end{matrix}\right.\)
4)
`x^3 -36x=0`
`<=>x(x^2 -36)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
5)
`2x+19=0`
`<=>2x=-19`
`<=>x=-19/2`
Cho a=\(\sqrt{5}\) + \(\sqrt{3}\)
a) Tính a3
b) Chứng minh x4 - 16x2 + 4 = 0
a) Ta có: \(a^3\)
\(=\left(\sqrt{5}+\sqrt{3}\right)^3\)
\(=5\sqrt{5}+15\sqrt{3}+9\sqrt{5}+3\sqrt{3}\)
b) Ta có: \(a^4-16a^2+4=0\)
\(\Leftrightarrow\left(\sqrt{5}+\sqrt{3}\right)^4-16\left(\sqrt{5}+\sqrt{3}\right)^2+4=0\)
\(\Leftrightarrow\left(8+2\sqrt{15}\right)^2-16\left(8+2\sqrt{15}\right)+4=0\)
\(\Leftrightarrow64+32\sqrt{15}+60-128-32\sqrt{15}+4=0\)
\(\Leftrightarrow0=0\)(đúng)
Cho
P = ( 4 x + 1 ) 3 – ( 4 x + 3 ) ( 16 x 2 + 3 ) v à Q = ( x – 2 ) 3 – x ( x + 1 ) ( x – 1 ) + 6 x ( x – 3 ) + 5 x .
Chọn câu đúng.
A. P = Q
B. P < Q
C. P > Q
D. P = 2Q
Ta có
P = ( 4 x + 1 ) 3 – ( 4 x + 3 ) ( 16 x 2 + 3 ) = ( 4 x ) 3 + 3 . ( 4 x ) 2 . 1 + 3 . 4 x . 1 2 + 1 3 – ( 64 x 3 + 12 x + 48 x 2 + 9 ) = 64 x 3 + 48 x 2 + 12 x + 1 – 64 x 3 – 12 x – 48 x 2 – 9 = - 8
Nên P = -8
Q = ( x – 2 ) 3 – x ( x + 1 ) ( x – 1 ) + 6 x ( x – 3 ) + 5 x = x 3 – 3 . x 2 . 2 + 3 x . 2 2 – 2 3 – x ( x 2 – 1 ) + 6 x 2 – 18 x + 5 x = x 3 – 6 x 2 + 12 x – 8 – x 3 + x + 6 x 2 – 18 x + 5 x = - 8
=> Q = -8
Vậy P = Q
Đáp án cần chọn là: A
16x2-8x+1
\(16x^2-8x+1\\ =\left(16x^2-4x\right)-\left(4x-1\right)\\ =4x\left(4x-1\right)-\left(4x-1\right)\\ =\left(4x-1\right)\left(4x-1\right)\\ =\left(4x-1\right)^2\)
(4x)^2 - 2.4x.1 + 1 = 0
(4x - 1)^2 = 0
4x - 1 = 0
x = 1/4
\(16x^2-8x+1=\left(4x-1\right)^2\)
Câu 1: x2 + 2 xy + y2 bằng:
A. x2 + y2 B.(x + y)2 C. y2 – x2 D. x2 – y2
Câu 2: (4x + 2)(4x – 2) bằng:
A. 4x2 + 4 B. 4x2 – 4 C. 16x2 + 4 D. 16x2 – 4
Câu 3: 25a2 + 9b2 - 30ab bằng:
A.(5a-9b)2 B.(5a – 3b)2 C.(5a+3b)2 D.(5a)2 – (3b)2
Câu 4: 8x3 +1 bằng
A.(2x+1).(4x2-2x+1) B. (2x-1).(4x2+2x+1) C.(2x+1)3 D.(2x)3-13
Câu 5:Thực hiện phép nhân x(3x2 + 2x - 5) ta được:
A.3x3 - 2x2 – 5x B. 3x3 + 2x2 – 5x C. 3x3 - 2x2 +5x D. 3x3 + 2x2 + 5x
câu 1 B
câu 2 D
câu 3 ko bt
câu 4 x=-1/2; x = -(căn bậc hai(3)*i-1)/4;x = (căn bậc hai(3)*i+1)/4;
câu 5 x=-5/3, x=0, x=1
Câu 1: x2 + 2 xy + y2 bằng:
A. x2 + y2 B.(x + y)2 C. y2 – x2 D. x2 – y2
Câu 2: (4x + 2)(4x – 2) bằng:
A. 4x2 + 4 B. 4x2 – 4 C. 16x2 + 4 D. 16x2 – 4
Câu 3: 25a2 + 9b2 - 30ab bằng:
A.(5a-9b)2 B.(5a – 3b)2 C.(5a+3b)2 D.(5a)2 – (3b)2
Câu 4: 8x3 +1 bằng
A.(2x+1).(4x2-2x+1) B. (2x-1).(4x2+2x+1) C.(2x+1)3 D.(2x)3-13
Câu 5:Thực hiện phép nhân x(3x2 + 2x - 5) ta được:
A.3x3 - 2x2 – 5x B. 3x3 + 2x2 – 5x C. 3x3 - 2x2 +5x D. 3x3 + 2x2 + 5x