Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minz Ank
Xem chi tiết
blua
11 tháng 7 2023 lúc 20:30

Đăt\(\sqrt{a}\)=x, \(\sqrt{b}\)=y (x,y>0)
=>xy+1=4y => 4y≥ \(2\sqrt{xy}\)=>\(2\sqrt{y}\)\(\sqrt{x}\)=> 4y≥x=> 4≥ \(\dfrac{x}{y}\)=> \(\dfrac{1}{4}\)\(\dfrac{y}{x}\)=>\(\dfrac{-1}{4}\)\(\dfrac{-y}{x}\)
Xét:A=(\(\dfrac{xy+y}{x+y}\)+\(\dfrac{xy+x}{y-x}\)+1):(\(\dfrac{xy+y}{x+y}\)+\(\dfrac{xy+x}{x-y}\)-1)
         = \(\dfrac{-2y^2\left(x+1\right)}{\left(x-y\right)\left(x+y\right)}\).\(\dfrac{\left(x-y\right)\left(x+y\right)}{2xy\left(x+1\right)}\)
=> A= \(\dfrac{-y}{x}\)\(\dfrac{-1}{4}\)
Dấu "=" xảy ra <=> xy=1 và x=4y <=> x=2, y=\(\dfrac{1}{2}\) <=> a =4, b=\(\dfrac{1}{4}\)

Vậy Max A =\(\dfrac{-1}{4}\) <=> a=4, b=\(\dfrac{1}{4}\)

PHAM THANH THUONG
Xem chi tiết
Pham Thanh Thuong
Xem chi tiết
Lê Hà Vy
Xem chi tiết
Đỗ Hoàng Dương
29 tháng 11 2021 lúc 19:36

sao tổng lại lớn hơn hiệu

Khách vãng lai đã xóa
Nguyễn Hiền Mai
Xem chi tiết
Hoàng Tử Hà
13 tháng 6 2019 lúc 23:00

sorry, câu b nhầm \(\sqrt{a}+\sqrt{b}=4\) thành \(a+b=4\)

Sửa:

\(\sqrt{a}+\sqrt{b}=4\Rightarrow a+b+2\sqrt{ab}=16\Leftrightarrow a+b=16-2\sqrt{ab}\)

Áp dụng BĐT cô si cho 2 số ko âm

\(a+b\ge2\sqrt{ab}\)\(\Rightarrow16-2\sqrt{ab}\ge2\sqrt{ab}\Leftrightarrow16\ge4\sqrt{ab}\)

\(\Leftrightarrow-\sqrt{ab}\ge-4\)

"="\(\Leftrightarrow a=b=4\)

Hoàng Tử Hà
13 tháng 6 2019 lúc 22:49

a/ ĐKXĐ: a,b\(\ge\) 0, ab\(\ne\) 1

\(P=\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)+\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)-ab+1}{ab-1}\right]:\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)-\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)+ab-1}{ab-1}\right]\)

\(P=\left(\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{ab-1}\right):\left(\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{ab-1}\right)\)

\(P=\frac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}.\frac{ab-1}{-2\sqrt{a}-2}=\frac{2\sqrt{ab}\left(\sqrt{a+1}\right)}{-2\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)

b/ BĐT cô si cho 2 số ko âm

\(a+b\ge2\sqrt{ab}\Rightarrow-\left(a+b\right)\le-2\sqrt{ab}\)

\(\Leftrightarrow-4\le-2\sqrt{ab}\Leftrightarrow-\sqrt{ab}\ge-2\)

"="\(\Leftrightarrow a=b=2\)

Hồ Quang Phước
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2022 lúc 13:00

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

Dũng Nguyễn Mạnh
Xem chi tiết
Dũng Nguyễn Mạnh
5 tháng 8 2019 lúc 13:25

chỗ có 2 số 1 bỏ hộ mk 1 số nha

trần thị minh nguyệt
5 tháng 8 2019 lúc 13:26

Tui cx đang có câu như thế mà k bt làm đây

Hu hu

Nguyễn Minh Anh
Xem chi tiết
Nguyễn Linh Chi
10 tháng 8 2019 lúc 15:57

Em kiểm tra lại đề bài nhé!

Trần Phương Thảo
Xem chi tiết
Thiên Thương Lãnh Chu
8 tháng 2 2021 lúc 21:45

a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a\ne b\end{matrix}\right.\)

P = \(\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\left(\dfrac{a+\sqrt{ab}+b-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)\(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)

\(\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\dfrac{\sqrt{a}-\sqrt{b}}{a-b}\)

\(\dfrac{1}{a-\sqrt{ab}+b}\)

b) có a = 16 và b = 4 (thoả mãn ĐKXĐ)

Thay a = 16, b =4 vào P có:

P = \(\dfrac{1}{16-\sqrt{16.4}+4}\)\(\dfrac{1}{12}\)

Vậy tại a =16, b = 4 thì P = \(\dfrac{1}{12}\)

Phạm Ngọc Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2023 lúc 14:19

\(I=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)

\(=\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left(\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}\)

\(=\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(a-\sqrt{ab}+b\right)}\)

Khi a=16 và b=4 thì \(I=\dfrac{16+4+4\cdot\sqrt{16\cdot4}}{\left(4-2\right)^2\cdot\left(16-\sqrt{16\cdot4}+4\right)}=\dfrac{20+4\cdot8}{4\cdot12}\)

\(=\dfrac{20+32}{48}=\dfrac{52}{48}=\dfrac{13}{12}\)