Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồng Lam
Xem chi tiết
Nguyễn Phương Thảo
11 tháng 8 2016 lúc 11:24

kẻ CE//BD ( E thuộc AD)
=> d( BD;SC)= d( BD; ( SCE))=d( O; ( SCE))
kẻ OK _|_SC
OC_|_ CE
SO_|_CE => CE_|_ ( SOC) => CE_|_OK 
do đó OK_|_(SCE)=> d(O;(SCE))=OK
1/OK^2=1/SO^2+1/OC^2
 

Nguyễn Phương Thảo
11 tháng 8 2016 lúc 11:27

câu 2:
BC//AD=> d( BC;SA)=d(BC:(SAD))=d( B;( SAD))=2 d( O; (SAD))
kẻ OH_|_ AD
kẻ OE_|_SH
ta có OH_|_AD; SO_|_AD=> AD_|_(SOH)=> AD_|_ OE
do đó OE_|_( SAD)=> d( O; (SAD))=OE
 

Buddy
Xem chi tiết
Bùi Nguyên Khải
21 tháng 8 2023 lúc 18:47

THAM KHẢO:

Bài tập 1 trang 56 Toán 11 tập 2 Chân trời

CD//AB nên góc giữa SB và CD là góc giữa AB và SB, \(\widehat{ABS}\)

CB//AD nên góc giữa SD và CB là góc giữa SD và AD, \(\widehat{ADS}\)

Ta có: tan\(\widehat{ABS}\)=tan\(\widehat{ADS}\)=\(\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

Suy ra \(\widehat{ABS}\)=\(\widehat{ADS}\)=\(\dfrac{\pi}{3}\)

NGUYỄN THỊ THANH HẢI
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Khôi Bùi
31 tháng 3 2022 lúc 19:07

a . \(\left(SAC\right)\cap\left(SBC\right)=SC\)   (3) 

Trên (SAC) hạ \(AH\perp SC\left(2\right)\) ; trên \(\left(SAB\right)\) hạ \(AK\perp SB\) 

C/m : HK \(\perp SC\) <- \(SC\perp\left(AHK\right)\) <- \(AK\perp SC\) 

C/m : AK \(\perp SC\)  . Ta có : \(BC\perp\left(SAB\right)\Rightarrow\left(SBC\right)\perp\left(SBA\right)\Rightarrow AK\perp\left(SBC\right)\left(AK\perp SB\right)\)

\(\Rightarrow AK\perp SC\) . Từ đó ; c/m được : \(HK\perp SC\)  (1) 

Từ (1) ; (2) ; (3) suy ra : \(\left(\left(SAC\right);\left(SBC\right)\right)=\widehat{AHK}\)

Tính được : AH ; AK  ; mặt khác : \(AK\perp\left(SBC\right)\Rightarrow AK\perp HK\) 

\(\Rightarrow\) \(\Delta HKA\)  \(\perp\) tại K 

\(\Rightarrow...\)

  

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 12:48

b. Từ A kẻ \(AE\perp SB\) ; \(AF\perp SD\)

Dễ dàng chứng minh \(AE\perp\left(SBC\right)\) và \(AF\perp\left(SCD\right)\)

\(\Rightarrow\) Góc giữa (SBC) và (SCD) là góc giữa AE và AF (là góc \(\widehat{EAF}\) nếu nó nhọn và là góc bù với \(\widehat{EAF}\) nếu nó tù)

Hệ thức lượng: \(AE=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a\sqrt{3}}{2}\) ; \(SE=\sqrt{SA^2-AE^2}=\dfrac{3a}{2}\)

\(AF=\dfrac{SA.AD}{\sqrt{SA^2+AD^2}}=\dfrac{a\sqrt{6}}{2}\) ; \(SF=\sqrt{SA^2-AF^2}=\dfrac{a\sqrt{6}}{2}\)

Áp dụng định lý hàm cos trong tam giác SBD:

\(cos\widehat{BSD}=\dfrac{SB^2+SD^2-BD^2}{2SB.SD}=\dfrac{\sqrt{6}}{4}\)

Áp dụng định lý hàm cos trong tam giác SEF:

\(EF=\sqrt{SE^2+SF^2-2SE.SF.cos\widehat{BSD}}=\dfrac{a\sqrt{6}}{2}\)

\(\Rightarrow cos\widehat{EAF}=\dfrac{AE^2+AF^2-EF^2}{2AE.AF}=\dfrac{\sqrt{2}}{4}\)

\(\Rightarrow\widehat{EAF}\approx69^018'\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 12:48

undefined

Phong Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 21:13

1:

a: BC vuông góc BA

BC vuông góc SA

=>BC vuông góc (SAB)

b: Kẻ BK vuông góc AC, BH vuông góc SK

=>BH=d(B;(SAC))

\(AC=\sqrt{BA^2+BC^2}=5a\)

AK=(4a)^2/5a=3,2a

BK=4a*3a/5a=2,4a

\(SB=\sqrt{2a^2+16a^2}=3a\sqrt{2}\)

SK=căn 2a^2+10,24a^2=a*3căn 34/5

BK=2,4a

SK^2+BK^2=SB^2

nên ΔSKB vuông tại K

=>K trùng với H

=>d(B;(SAC))=BK=2,4a

Hương Trần
Xem chi tiết
Khanh Tâm
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 3 2023 lúc 12:19

loading...

Nguyễn Việt Lâm
31 tháng 3 2023 lúc 12:20

a. Em kiểm tra lại đề bài xem có nhầm lẫn đâu không.

Ta có CN cắt AB tại N (do N là trung điểm AB) nên không tồn tại \(d\left(CN,AB\right)\) (chỉ có khoảng cách giữa 2 đường thẳng song song hoặc chéo nhau chứ không có khoảng cách giữa 2 đường thẳng cắt nhau).

b.

Gọi E là điểm đối xứng D qua A \(\Rightarrow DE=2AD=2BC\), gọi F là trung điểm SE.

\(\Rightarrow MF\) là đường trung bình tam giác SDE \(\Rightarrow\left\{{}\begin{matrix}MF=\dfrac{1}{2}DE=BC\\MF||DE||BC\end{matrix}\right.\)

\(\Rightarrow\) Tứ giác BCMF là hình bình hành \(\Rightarrow CM||BF\)

Lại có AM là đường trung bình tam giác SDE \(\Rightarrow AM||SE\)

\(\Rightarrow\left(ACM\right)||\left(SBE\right)\Rightarrow d\left(SB,CM\right)=d\left(\left(ACM\right),\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)

Gọi H là trung điểm BE, do \(AE=AD=AB\Rightarrow\Delta ABE\) vuông cân tại A

\(\Rightarrow AH\perp BE\Rightarrow BE\perp\left(SAH\right)\)

Trong mp (SAH), từ A kẻ \(AK\perp SH\) \(\Rightarrow AK\perp\left(SBE\right)\)

\(\Rightarrow AK=d\left(A;\left(SBE\right)\right)=d\left(SB,CM\right)\)

\(AH=\dfrac{1}{2}BE=\dfrac{1}{2}\sqrt{AB^2+AE^2}=\dfrac{a\sqrt{2}}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SAH:

\(AK=\dfrac{SA.AH}{\sqrt{SA^2+AH^2}}=\dfrac{a\sqrt{21}}{7}\)

Lê Ngọc Nhả Uyên
Xem chi tiết
Thiện Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 8:19

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

Hah Gấune
Xem chi tiết