Những câu hỏi liên quan
Vũ Hoàng Long
Xem chi tiết
Võ Đông Anh Tuấn
11 tháng 6 2016 lúc 20:37

Em mới học lớp 7

Nguyễn Thị Thanh
12 tháng 6 2016 lúc 8:28

e năm nay ms lên lớp 8

sorry a trai nhìu nhìu

Vũ Trọng Nghĩa
12 tháng 6 2016 lúc 14:28

Ta có :\(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\left(1\right).\)( vì x,y >0 ; \(x^2+y^2\ge2xy\Rightarrow\frac{xy^2}{x^2+y^2}\le\frac{xy^2}{2xy}.\))

Chứng minh tương tự ta có : 

\(\frac{y^3}{y^2+z^2}\ge y-\frac{z}{2}\left(2\right).\);       \(\frac{z^3}{z^2+x^2}\ge z-\frac{x}{2}\left(3\right).\)

Cộng vế với vế của các bất đẳng thức (1), (2) và (3) ta được :

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}.\)( đpcm)

Khởi My
Xem chi tiết
Sengoku
1 tháng 6 2019 lúc 20:34

đặt A=\(\frac{1}{x\left(x+1\right)}\) +\(\frac{1}{y\left(y+1\right)}\) +\(\frac{1}{z\left(z+1\right)}\)=\(\frac{1}{x}\)-\(\frac{1}{x+1}\)+\(\frac{1}{y}\)-\(\frac{1}{y+1}\)+\(\frac{1}{z}\)-\(\frac{1}{z+1}\)

Áp dụng BĐT phụ \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\) (bạn tự chứng minh nha,quy đồng ,nhân chéo ,chuyển về )⇒\(\frac{1}{a+b}\)\(\frac{1}{4}\)(\(\frac{1}{a}\)+\(\frac{1}{b}\))

⇒A≥\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)-\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)+3)

⇒A≥\(\frac{3}{4}\) (\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))-\(\frac{3}{4}\)\(\frac{3}{4}\) (\(\frac{9}{x+y+z}\))-\(\frac{3}{4}\)

⇒a≥\(\frac{9}{4}\)-\(\frac{3}{4}\)=\(\frac{3}{2}\) dpcm

Sengoku
1 tháng 6 2019 lúc 20:36

dấu bằng xảy ra⇔x=y=z=1

Vũ Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 2 2020 lúc 21:31

\(VT=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\)

Dấu "=" xảy ra khi \(x=y=z\)

Khách vãng lai đã xóa
Nguyễn Võ Tâm Đan
Xem chi tiết
Phạm Thành Đông
7 tháng 3 2021 lúc 20:58

Dễ dàng chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)

Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)(3)

Chứng mih tương tự, ta được;

\(y+z\ge2\sqrt{yz}\)(4);

\(z+x\ge2\sqrt{zx}\)(5)

Từ (3), (4), (5), ta được:

\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)

Khách vãng lai đã xóa
Phạm Thành Đông
7 tháng 3 2021 lúc 21:03

Mà theo đề bài, \(x+y+z\ge3\) nên:

\(\frac{x+y+z}{2}\ge\frac{3}{2}\)

Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)

Từ (2) và (6), ta được:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
7 tháng 3 2021 lúc 21:31

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

\(\frac{x^2}{x+\sqrt{yz}}+\frac{x+\sqrt{yz}}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)

Tượng tự ta có : \(\frac{y^2}{y+\sqrt{xz}}+\frac{y+\sqrt{xz}}{4}\ge y\)

\(\frac{z^2}{z+\sqrt{xy}}+\frac{z+\sqrt{xy}}{4}\ge z\)

Cộng vế với vế của BĐT ta được : 

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}+\frac{x+\sqrt{yz}}{4}+\frac{y+\sqrt{xz}}{4}+\frac{z+\sqrt{xy}}{4}\ge x+y+z\)

\(VT\ge x+y+z-\frac{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{4}\)

mà \(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)

\(VT\ge\frac{4\left(x+y+z\right)-2\left(x+y+z\right)}{4}=\frac{2\left(x+y+z\right)}{4}\)

mà \(x+y+z\ge3\)hay \(VT\ge=\frac{6}{4}=\frac{3}{2}\)

Dấu ''='' xảy ra <=> x = y = z = 1

Khách vãng lai đã xóa
Văn Thắng Hồ
Xem chi tiết
Phạm Nguyễn Thế Khôi
24 tháng 4 2020 lúc 9:20

Violympic toán 9Violympic toán 9

Nguyễn Thu Trà
Xem chi tiết
Akai Haruma
25 tháng 5 2019 lúc 21:41

Lời giải:
Áp dụng BĐT AM-GM ta có:

\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)

\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)

Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Cauchy-Schwarz:

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)

\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)

\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)

Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)

Do đó \(\text{VT}\geq \text{VP}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$


Yim Yim
Xem chi tiết
Phùng Minh Quân
16 tháng 5 2020 lúc 18:34

\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

Khách vãng lai đã xóa
tth_new
27 tháng 6 2020 lúc 20:45

\(VT-VP=\Sigma\frac{\left(x+y\right)\left(x-y\right)^2}{y^2}\ge0\)

Khách vãng lai đã xóa
Phong Bùi
Xem chi tiết
nguyen duc tuan
24 tháng 12 2017 lúc 14:39
ghhjkkkk
trần xuân quyến
Xem chi tiết
hoang thao my
9 tháng 6 2018 lúc 9:48

tau không biết nhà xin lỗi