tìm giá trị lớn nhất của S=\(\sqrt{x-1}\) +\(\sqrt{y-2}\)biết x+y=4
Tìm giá trị lớn nhất, giá trị lớn nhất của hàm số (nếu có)
a, \(y=\sqrt{x^2+x-2}\)
b, \(y=\sqrt{2+x}+\sqrt{4-x}\)
c, \(y=x+\sqrt{4-x^2}\)
Lời giải:
a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)
Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.
$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học
$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)
Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$
$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky
$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$
Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$
c. ĐKXĐ: $-2\leq x\leq 2$
$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky
$\Leftrightarrow y^2\leq 8$
$\Leftrightarrow y\leq 2\sqrt{2}$
Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$
Mặt khác:
$x\geq -2$
$\sqrt{4-x^2}\geq 0$
$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$
Cho các số thực dương x,y thuộc (0;1). Tìm giá trị lớn nhất của biểu thức: \(P=\sqrt{x}+\sqrt{y}+\sqrt[4]{12}\sqrt{x.\sqrt{1-y^2}+y\sqrt{1-x^2}}\)
Đặt \(\left\{{}\begin{matrix}x=sina\\y=sinb\end{matrix}\right.\) với \(a;b\in\left(0;\dfrac{\pi}{2}\right)\)
\(P=\sqrt{sina}+\sqrt{sinb}+\sqrt[4]{12}.\sqrt{sina.cosb+cosa.sinb}\)
\(P\le\sqrt{2\left(sina+sinb\right)}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}\)
Do \(sina+sinb=2sin\dfrac{a+b}{2}cos\dfrac{a-b}{2}\le2sin\dfrac{a+b}{2}\)
\(\Rightarrow P\le2\sqrt{sin\dfrac{a+b}{2}}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}=2\sqrt{sint}+\sqrt[4]{12}.\sqrt{sin2t}\)
\(\Rightarrow\dfrac{P}{\sqrt{2}}\le\sqrt{2sint}+\sqrt{\sqrt{3}.sin2t}\Rightarrow\dfrac{P^2}{4}\le2sint+\sqrt{3}sin2t\)
\(\Rightarrow\dfrac{P^2}{8}\le sint\left(1+\sqrt{3}cost\right)\Rightarrow\dfrac{P^4}{64}\le sin^2t\left(1+\sqrt{3}cost\right)^2\le2sin^2t\left(1+3cos^2t\right)\)
\(\Leftrightarrow\dfrac{P^4}{128}\le sin^2t\left(4-3sin^2t\right)=-3sin^4t+4sin^2t\)
\(\Leftrightarrow\dfrac{P^4}{128}\le-3\left(sin^2t-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\le\dfrac{4}{3}\)
\(\Rightarrow P\le4.\sqrt[4]{\dfrac{2}{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(sint=\sqrt{\dfrac{2}{3}}\)
giá trị lớn nhất của \(S=\sqrt{x-2}+\sqrt{y-4}\)biết x+y=56
tìm giá trị lớn nhất của M=\(\dfrac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
\(\Rightarrow M=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-4}}{y}=\dfrac{\sqrt{\left(x-1\right)\cdot1}}{x}+\dfrac{4\sqrt{y-4}}{4y}\le\dfrac{x-1+1}{2x}+\dfrac{y-4+4}{4y}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}\) Dấu = xảy ra \(\Leftrightarrow x=2;y=8\)
BT1: Tìm Giá trị lớn nhất
A= \(\sqrt{x-1}+\sqrt{y-2}\) biết x+y = 4
B= \(\sqrt{x-4}+\sqrt{y-3}\) biết x+y=15
C= \(\frac{\sqrt{x-9}}{5x}\)
BT2: Tìm Giá trị nhỏ nhất
A= \(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}\)
Gọi M,m lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y=\(\sqrt{1+x}+\sqrt{1-x}\). Giá trị của M+m là
A.4 B.2+\(\sqrt{2}\) C.4+\(\sqrt{2}\) D.2
cho 2 số thực x,y thỏa mãn điều kiên \(x+y+25=8\left(\sqrt{x-1}+\sqrt{y-5}\right)\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=\sqrt{\left(x-1\right)\left(y-5\right)}\)
Tìm giá trị lớn nhất của A= \(\dfrac{\sqrt{z-1}}{z}+\dfrac{\sqrt{x-2}}{x}+\dfrac{\sqrt{y-3}}{y}\)
đkxđ: \(z\ge1;x\ge2;y\ge3\)
Đặt \(a=\sqrt{z-1}\ge0;b=\sqrt{x-2}\ge0;c=\sqrt{y-3}\ge0\)
\(\Rightarrow z=a^2+1;x=b^2+2;y=c^2+3\)
\(\Rightarrow A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+2}+\dfrac{c}{c^2+3}\)
Do các biến \(a,b,c\) độc lập nhau nên ta xét từng phân thức một.
Đặt \(f\left(a\right)=\dfrac{a}{a^2+1}\) \(\Rightarrow f\left(a\right).a^2-a+f\left(a\right)=0\) (*)
Nếu \(f\left(a\right)=0\) thì \(a=0\), rõ ràng đây không phải là GTLN cần tìm.
Xét \(f\left(a\right)\ne0\)
Để pt (*) có nghiệm thì \(\Delta=\left(-1\right)^2-4\left[f\left(a\right)\right]^2\ge0\)
\(\Leftrightarrow\left(1+2f\left(a\right)\right)\left(1-2f\left(a\right)\right)\ge0\)
\(\Leftrightarrow-\dfrac{1}{2}\le f\left(a\right)\le\dfrac{1}{2}\)
\(f\left(a\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{a}{a^2+1}=\dfrac{1}{2}\Leftrightarrow a^2+1=2a\Leftrightarrow a=1\) (nhận)
Vậy \(max_{f\left(a\right)}=\dfrac{1}{2}\).
Tiếp đến, gọi \(g\left(b\right)=\dfrac{b}{b^2+2}\) \(\Rightarrow g\left(b\right).b^2-b+2g\left(b\right)=0\) (**)
Tương tự nếu \(b=0\) thì vô lí. Xét \(b\ne0\). Khi đó để (**) có nghiệm thì \(\Delta=\left(-1\right)^2-8\left[g\left(b\right)\right]^2\ge0\)
\(\Leftrightarrow\left(1-2\sqrt{2}g\left(b\right)\right)\left(1+2\sqrt{2}g\left(b\right)\right)\ge0\)
\(\Leftrightarrow-\dfrac{1}{2\sqrt{2}}\le g\left(b\right)\le\dfrac{1}{2\sqrt{2}}\)
\(g\left(b\right)=\dfrac{1}{2\sqrt{2}}\Leftrightarrow\dfrac{b}{b^2+2}=\dfrac{1}{2\sqrt{2}}\Leftrightarrow b^2+2=2\sqrt{2}b\Leftrightarrow b=\sqrt{2}\) (nhận)
Vậy \(max_{g\left(b\right)}=\dfrac{1}{2\sqrt{2}}\)
Làm tương tự với \(h\left(c\right)=\dfrac{c}{c^2+3}\), ta được \(max_{h\left(c\right)}=\dfrac{1}{2\sqrt{3}}\), xảy ra khi \(c=\sqrt{3}\)
Vậy GTLN của A là \(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{6+3\sqrt{2}+2\sqrt{3}}{12}\), xảy ra khi \(\left(a,b,c\right)=\left(1,\sqrt{2},\sqrt{3}\right)\) hay \(\left(x,y,z\right)=\left(2,4,6\right)\).
Giá trị lớn nhất:
S=\(\sqrt{x-2}+\sqrt{y-4}\)
Biết x+y=56