x+y=4 nên xảy ra các trường hợp là x=0,y=4 ; x=1,y=3 ; x=2,y=2 ; x=3,y=1 ; x=4,y=0
TH1: x=0,y=4
=>\(\sqrt{-1}\)+\(\sqrt{2}\)thì ko có chuyện đó
TH2: x=1,y=3
=>\(\sqrt{0}\)+\(\sqrt{1}\)bằng 1
TH3:x=2,y=2
=>\(\sqrt{1}\)+\(\sqrt{0}\)bằng 1
TH4:x=3,y=1 bằng 1 bạn tự tính
TH5: x=4,y=0 thì cũng ko có chuyện đó
Vậy tổng S lớn nhất là 1.
k mình nhé hơi thủ công
Tại mình giải theo kiểu lớp 6 và ... bấm máy tính bạn ah
\(\hept{\begin{cases}\sqrt{x-1}>=0\\\sqrt{y-2}>=0\end{cases}}\)
\(=>\hept{\begin{cases}x-1>=0\\y-2>=0\end{cases}}\)
\(=>\)Chỉ còn 2 trường hợp
TH1:\(\hept{\begin{cases}x=2\\y=2\end{cases}}\)
\(< =>S=\sqrt{2-1}+\sqrt{2-2}\)
\(< =>S=1\)
TH2:\(\hept{\begin{cases}x=1\\y=3\end{cases}}\)
\(=>S=\sqrt{1-1}+\sqrt{3-2}\)
\(=>S=1\)
Vậy GTLN của S=1, Khi x=2,y=2 hoặc x=1,y=3
Ủa đề có yêu cầu \(x,y\)nguyên không mà các bạn giải kiểu đó?
\(S=\sqrt{x-1}+\sqrt{2-x}\le\sqrt{\frac{x-1+2-x}{2}}=\sqrt{\frac{1}{2}}\)
Đẳng thức xảy ra khi \(x=\frac{3}{2}\)
Í đánh nhầm, ẩu quá
\(S\le\sqrt{2\left(x-1+2-x\right)}=\sqrt{2}\)