Cho tam giác ABC vuông tai A, kẻ đường cao AH ( H BC). Chứng minh:
a) DABC DHBA ?
b) AB2 = BC. BH ?
Bài 3: Cho vuông tại A, đường cao AH.
a) Chứng minh DABC đồng dạng với DHBA, từ đó suy ra AB2 = BH. BC
b) Trên tia đối của tia AC lấy điểm D tùy ý, dựng AK vuông góc với DB tại K. Chứng minh:
BK. BD = BH . BC.
a: Xét ΔABC và ΔHBA có
góc B chung
góc BAC=góc BHA
=>ΔABC đồng dạng vơi ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: ΔABD vuông tại A có AK vuông góc BD
nên BK*BD=BA^2=BH*BC
Bài 3 : Cho tam giác ABC vuông tai A, AB =15 cm; AC = 20 cm . Kẻ đường cao AH a/ Chứng minh : ABC HBA từ đó suy ra : AB2 = BC. BH b/ Tính BH và CH.
a. Xét tam giác ABC và tam giác HBA, có:
\(\widehat{A}=\widehat{H}=90^0\)
\(\widehat{B}:chung\)
Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )
\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
\(\Leftrightarrow AB^2=BC.BH\)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{15^2+20^2}=\sqrt{625}=25cm\)
Ta có:
\(AB^2=BC.BH\) ( cmt )
\(\Leftrightarrow15^2=25.BH\)
\(\Leftrightarrow225=25BH\)
\(\Leftrightarrow BH=9cm\)
\(\Rightarrow CH=BC-BH=25-9=16cm\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, AC = 16cm.
a) Tính độ dài BC
b) Chứng minh rằng: AB2 = BH. BC
c) Vẽ trung tuyến AM của DABC, trên tia đối tia MA lấy điểm E sao cho ME = 5cm, trên
tia đối của tia BA lấy điểm F sao cho BF = 6cm.
CMR: BC // EF
Áp dụng định lý pytago ta có :
`AC^2+AB^2=BC^2`
hay `16^2+12^2=BC^2`
`=>BC^2=400`
`=>BC=20(cm)`
Cho tam giác ABC vuông tại A, đường cao AH.
a. Chứng minh DABC đồng dạng với DHBA, từ đó suy ra ;
b. Tia phân giác của góc ABC cắt AH tại I. Chứng minh rằng ;
c. Tia phân giác của góc HAC cắt BC tại K. Chứng minh song song với .
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b,c: Bạn ghi rõ đề lại đi bạn
Cho tam giác ABC vuông tại A,đường cao AH (H thuộc BC).Biết AB=18cm,AC=24cm.
a)Chứng minh: AB2=BH . BC
b)Kẻ đường phân giác CD của tam giác ABC (D thuộc AB).Tính độ dài DA.
a.
Xét hai tam giác vuông HBA và ABC có:
\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{AHB}=\widehat{BAC}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)
\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH.BC\)
b.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=30\left(cm\right)\)
Áp dụng định lý phân giác:
\(\dfrac{AD}{AC}=\dfrac{BD}{BC}\Rightarrow\dfrac{AD}{24}=\dfrac{18-AD}{30}\)
\(\Rightarrow AD=8\left(cm\right)\)
Bài1. Cho tam giác ABC vuông tại A. Kẻ đường cao AH (H thuộc BC).
a) Tìm các cặp tam giác đồng dạng.
b) Chứng minh AH2=BH.CH; AB2 = BH.BC; AC2 = CH.BC
c) Biết BH=9cm, CH = 16cm. Tính độ dài các cạnh của tam giác ABC.
Cho tam giác ABC vuông tại A có đường cao AH ( H thuộc BC)
a) Chứng minh : tam giác ABH đồng dạng tam giác CBA sau đó suy ra AB2= BH.BC
b) Chứng minh AH2=BH.CH
C) Gọi M là trung điểm của BH, kẻ CK vuông góc với AM tại K, CK cắt AH tại I. Chứng minh IA=IH
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA
=>BA^2=BH*BC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của HA
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
cho tam giác ABC vuông tại A đường cao AH. chứng minh: a/ tam giác HBA đồng dạng với tam giác AHC. b/ AB2= BH. BC
cho tam giác ABC vuông tại A , đường cao AH
a. Chứng minh DABC đồng dạng với DHBA, từ đó suy ra AB bình= BH.BC
b. Tia phân giác của góc ABC cắt AH tại I, chứng minh rằng IA/IH=AC/HA
c. Tia phân giác của góc HAC cắt BC tại K, chứng minh rằng IK song song với AC
a. Xét tam giác ABC và tam giác HBA có:
góc A= góc H= 90o
góc B chung
=> tam giác ABC ~ tam giác HBA (g.g)
=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)
=> AB2= BH.BC