rút gọn
\(\dfrac{sin2a+1}{cos2a}-\dfrac{1-sin2a}{sina-cosb}\)
Don gian bieu thuc sau
a) A= \(\dfrac{1-cosa+cos2a}{sin2a-sina}\) b) B= \(\sqrt{\dfrac{1}{2}-\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}cosa}}\) (0<a≤\(\pi\)).
c) C= \(\dfrac{cosa-cos3a+cos5a-cos7a}{sina+sin3a+sin5a+sin7a}\)
có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
Á dụng công thức \(cotx-cot2x=\dfrac{1}{sin2x}\) để rút gọn biểu thức sau
\(S=\dfrac{1}{sina}+\dfrac{1}{sin2a}+\dfrac{1}{sin4a}+\dfrac{1}{sin8a}\)
Cm:\(\dfrac{1+cos2a+sin2a}{1+sin2a-cos2a}=tana\)
\(VT=\dfrac{1+\cos^2a-\sin^2a+2\cdot\sin a\cdot\cos a}{1+2\cdot\sin a\cdot\cos a-\cos^2a+\sin^2a}\)
\(=\dfrac{2\cdot\cos^2a+2\cdot\sin a\cdot\cos a}{2\cdot\sin^2a+2\cdot\sin a\cdot\cos a}\)
\(=\dfrac{2\cdot\cos a\left(\cos a+\sin a\right)}{2\cdot\sin a\cdot\left(\sin a+\cos a\right)}\)
\(=\dfrac{\cos a}{\sin a}=\cot a\)
Sử dụng định nghĩa tỉ số lượng giác của 1 góc nhọn để chứng minh rằng với góc nhọn a tùy ý ta có:
tan a=\(\dfrac{sina}{cosa}\) cot a=\(\dfrac{cosa}{sina}\) tan a . cot a =1 sin2a + cos2a= 1
Cho sina - cosa =1/5. Tính sin2a, cos2a
(Sina -cosa)^2 =1:25
<=> sin^2a +cos^2a -2sina.cosa =1:25
Ta có sin^2a+cos^2a = 1
<=> 1-2 sina.cosa =1:25
2sina.cosa =24:25
CT : sin2a= 2sina.cosa=24:25
Có sin^2 .2a + co^2.2a = 1
(24:25)^2 + cos^2.2a =1
Từ đây rút cos 2a = căn 1-(24:25)^2 =... bạn tự làm tiếp nha !
Rút gọn biểu thức:
B = (1+ tan2a).(1- sin2a) \(-\)(1+ cotg2a).(1- cos2a)
\(\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\dfrac{sin^2a}{cos^2a}\right).cos^2a-\left(1+\dfrac{cos^2a}{sin^2a}\right).sin^2a\)
\(=cos^2a+sin^2a-sin^2a-cos^2a=\)\(0\)
Vậy B=0
Câu 1: Biết a - b = \(\frac{\text{π}}{3}\). Tính giá trị biểu thức:
A = ( cosa + cosb )2 + ( sina + sinb )2
Câu 2: Cho biết cosa + sina = \(\frac{6}{5}\)và cosa > sina. Tính cos2a ; sin2a
\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)
\(=cos^2a+sin^2a+cos^2b+sin^2b+2\left(cosa.cosb+sina.sinb\right)\)
\(=2+2cos\left(a-b\right)=2+2cos\frac{\pi}{3}=3\)
\(\left(cosa+sina\right)^2=\frac{36}{25}\Leftrightarrow1+2sina.cosa=\frac{36}{25}\)
\(\Rightarrow sin2a=\frac{36}{25}-1=\frac{11}{25}\)
\(cos2a=cos^2a-sin^2a=\left(cosa-sina\right)\left(cosa+sina\right)>0\)
\(\Rightarrow cos2a=\sqrt{1-sin^22a}=\frac{6\sqrt{14}}{25}\)
Cho tam giác ABC. CMR:
a) sinA + sinB + sinC = 4cos(A/2)cos(B/2)cos(C/2)
b) cosA + cosB + cosC = 1 + 4sin(A/2)sin(B/2)sin(C/2)
c) sin2A + sin2B + sin2C = 4sinA.sinB.sinC
d) cos2A + cos2B + cos2C = -(1 + 4cosA.cosB.cosC)
Cho tam giác ABC. CMR:
a) sinA + sinB + sinC = 4cos(A/2)cos(B/2)cos(C/2)
b) cosA + cosB + cosC = 1 + 4sin(A/2)sin(B/2)sin(C/2)
c) sin2A + sin2B + sin2C = 4sinA.sinB.sinC
d) cos2A + cos2B + cos2C = -(1 + 4cosA.cosB.cosC)