Tìm x:
3x^3-12x^2+12x=0
Tìm x
a, x\(^2\)-6x=-9
b, 2(x+3)-x\(^2\)+3x=0
c, x\(^3\)-6x\(^2\)+12x-7=0
a. x2 - 6x = -9
<=> x2 - 6x + 9 = 0
<=> (x - 3)2 = 0
<=> x - 3 = 0
<=> x = 3
b. 2(x + 3) - x2 + 3x = 0
<=> 2(x + 3) - x(x + 3) = 0
<=> (2 - x)(x + 3) = 0
<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Giải các phương trình sau:
a \(x^4=5x^2+2x-3\)
b \(x^4=6x^2+12x+10\)
c \(3x^3+3x^2+3x=-1\)
d \(8x^3-12x^2+6x-5=0\)
3x^3 - 12x = 0
tìm x
\(3x^3-12x=0\)
\(3x\left(x^2-4\right)=0\)
\(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}}\)
\(x^2=4\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy x = 0 ; 2 hoặc -2
hok tốt .
3x3-12x = 0
=> 3x.(x2-4) = 0
=> 3x = 0 => x = 0
x2-4 = 0 => x2 = 4 => x = 2 hoặc x = -2
KL: x = 0 hoặc x = 2 hoặc x = -2
\(3x^3-12x=0\)
\(\Rightarrow3x\left(x^2-4\right)=0\)
\(\Rightarrow3x=0\)
\(\Rightarrow x=0\)
\(\Rightarrow x^2-4=0\Rightarrow x^2=4\Rightarrow x=\pm2\)
Vậy x = 0 hoặc 2 hoặc -2
\(A=\left(\frac{2+4x}{8+4x}-\frac{x}{3x-6}+\frac{2x^3}{12x-3x^3}\right)\div\frac{6x+13x^2}{24x-12x^2}\)
a) Tìm TXĐ và Rút gọn A
b) Tìm x để \(A>0,A>-1\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0
Tìm x
a) 12x2-3x = 6
b) x2-4x+3=6
c) 3x2-12x=0
d) x2+3x=4=0
a)
\(12x^2-3x=6\\ \Leftrightarrow x^2-\dfrac{1}{4}x=\dfrac{1}{2}\\ \Leftrightarrow x^2-2.\dfrac{1}{8}x+\left(\dfrac{1}{8}\right)^2=\dfrac{1}{2}+\left(\dfrac{1}{8}\right)^2=\dfrac{33}{64}\\ \Leftrightarrow\left(x-\dfrac{1}{8}\right)^2=\dfrac{33}{64}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{8}=\dfrac{\sqrt{33}}{8}\\x-\dfrac{1}{8}=-\dfrac{\sqrt{33}}{8}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{33}}{8}\\x=\dfrac{1-\sqrt{33}}{8}\end{matrix}\right.\)
b)
\(x^2-4x+3=0\\ \Leftrightarrow x^2-4x+4=-3+4=1\\ \Leftrightarrow\left(x-2\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c)
\(3x^2-12x=0\\ \Leftrightarrow x^2-4x=0\\ \Leftrightarrow x^2-4x+4=4\\ \Leftrightarrow\left(x-2\right)^2=4\\ \Rightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
d) TH1:
\(x^2+3x+4=0\\ \Leftrightarrow x^2+2.1,5x+\left(1,5\right)^2=\left(1,5\right)^2-4=-\dfrac{7}{4}\\ \Leftrightarrow\left(x+1,5\right)^2=-\dfrac{7}{4}\left(vô\:lí\right)\)
do đó pt trên vô nghiệm
TH2:
\(x^2+3x-4=0\\ \Leftrightarrow x^2+2.\dfrac{3}{2}x+\dfrac{3}{2}=4+\dfrac{3}{2}=\dfrac{25}{4}\\ \Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{25}{4}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{2}=\dfrac{5}{2}\\x+\dfrac{3}{2}=-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{2}=1\\x=-\dfrac{8}{2}=-4\end{matrix}\right.\)
Tìm x, 3x^2 -12x=0
3x2-12x=0
3(x2-4x)=0
3x(x-4)=0
Để 3x(x-4)=0 thì x-4=0 <=> x=4
3x=0 <=> x=0
Vậy x=4 hoặc x=0
3x2-12x=0
3x(x-4)=0
=>3x=0=>x=0
=>x-4=0=>x=4
vậy x =0 hoặc 4
x ^{ 4 } +3x ^{ 3 } -12x ^{ 2 } -3x+1 = 0
Tìm x, biết: \(16x^3-12x^2+3x-7=0\)
\(16x^3-12x^2+3x-7=0\)
\(\Leftrightarrow16x^3-16x^2-3x^2+3x+7x^2-7=0\)
\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+7\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\left(7x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(16x^2-3x+7x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(16x^2+4x+7\right)=0\)
<=> x - 1 = 0
<=> x = 1
\(\Leftrightarrow16x^3-16x^2+4x^2-4x+7x-7=0\)
\(\Leftrightarrow16x^2.\left(x-1\right)+4x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(16x^2+4x+7\right)=0\)
Ta có \(16x^2+4x+7=\left(4x\right)^2+2.4x.\frac{1}{2}+\frac{1}{4}+\frac{27}{4}\)
\(=\left(4x+\frac{1}{2}\right)^2+\frac{27}{4}>0\)
nên \(\left(x-1\right).\left(16x^2+4x+7\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Rightarrow x=1\)
tìm X biết \(16X^3-12X^2+3X-7=0\)
\(16x^3-12x^2+3x-7=0\)
\(16x^3-16x^2+4x^2-4x+7x-7=0\)
\(16x^2\left(x-1\right)+4x\left(x-1\right)+7\left(x-1\right)=0\)
\(\left(x-1\right)\left(16x^2+4x+7\right)=0\)
Vì \(0< 16x^2+4x+7\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Tìm x, biết 16x3 - 12x2 + 3x - 7 = 0
= 16x3 -16x2 + 4x2 - 4x + 7x - 7
= 16x2(x-1)+4x(x-1)+7(x-1)
=(x-1)(16x2+4x+7)