\(\sqrt{3}-2\cdot2\sqrt{3}\)
\(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4\cdot2-4\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4}\cdot\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\)
tính
\(\left[\sqrt{12}-3\sqrt{75}\right]\cdot\sqrt{3}\)
\(\left[\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right]\cdot2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+4\sqrt{2}\right).2\sqrt{6}=12-18\sqrt{2}+16\sqrt{3}\)
\(41\sqrt[9^1]{8\sqrt[2]{\frac{12}{2.85\frac{1\cdot2+3\cdot4+5\cdot6+7\cdot8+9\sqrt[4]{16}}{2\cdot\frac{12}{2}\sqrt{4^2}-7^2}}}4\cdot5\cdot6\cdot7\cdot8\cdot9}\)
Ô phép tính khủng. Cái này do bạn chế ra à !
Mọi người có thể gt rỏ cho mình tại sao
\(5\sqrt{\dfrac{4}{3}}=5\cdot\dfrac{2}{3}\sqrt{3}\\\)
mình nghĩa là \(5\cdot2\sqrt{\dfrac{1}{3}}\)
\(5\sqrt{\dfrac{4}{3}}=5.\dfrac{\sqrt{4}}{\sqrt{3}}=5.2.\dfrac{1}{\sqrt{3}}=5.2.\dfrac{\sqrt{3}}{\sqrt{3}.\sqrt{3}}=5.2.\dfrac{\sqrt{3}}{3}=5.\dfrac{2}{3}\sqrt{3}\)
\(S=\sqrt{1+\dfrac{8\cdot1^2-1}{1^2\cdot3^2}+\sqrt{1+\dfrac{8\cdot2^2-1}{3^2\cdot5^2}}+....}+\sqrt{1+\dfrac{8\cdot1003^2-1}{2005^2\cdot2007^2}}\)
Giúp với!!!
1
a/Tìm 3 số x, y, z biết:
\(35+x+y+z=\left(2\sqrt{x+1}+3\sqrt{y+2}+4\sqrt{z+3}\right)\cdot2\)
b/ Tìm nghiệm của phương trình:
\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\)
2
Tính tổng A=\(2016^2-2015^2+2014^2-2013^2+...+2^2-1\)
Mình có thể giúp bạn bài 2 như sau, thủ thuật vô cùng đơn giản :
Ta có : 20162-20152 = (2016-2015).(2015+2016) = 2015+2016. Tương tự với các số khác, ta có :
A = 2016+2015+2014+2013+...+2+1 = 2016.2017:2=2033136
ok ?
\(\frac{1}{\sqrt{1\cdot2}}+\frac{1}{\sqrt{2\cdot3}}+\frac{1}{\sqrt{3\cdot4}}+...+\frac{1}{\sqrt{n\cdot\left(n+1\right)}}\)
rút gọn phân thức
Rút gọn biểu thức:
a)\(\sqrt{\frac{25}{81}\cdot\frac{16}{49}\cdot\frac{169}{9}}\)
b) \(\sqrt{3\frac{1}{16}\cdot2\frac{14}{25}\cdot2\frac{34}{81}}\)
a) \(\sqrt{\frac{25}{81}\cdot\frac{16}{49}\cdot\frac{169}{9}}\\ =\sqrt{\left(\frac{5}{9}\right)^2\cdot\left(\frac{4}{7}\right)^2\cdot\left(\frac{13}{3}\right)^2}\\ =\sqrt{\left(\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{13}{3}\right)^2}\\ =\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{13}{3}\\ =\frac{260}{189}\)
b) \(\sqrt{3\frac{1}{6}\cdot2\frac{14}{25}\cdot2\frac{34}{81}}\\ =\sqrt{\frac{19}{6}\cdot\frac{64}{25}\cdot\frac{196}{81}}\\ =\sqrt{\frac{19}{6}\cdot\left(\frac{8}{5}\right)^2\cdot\left(\frac{14}{9}\right)^2}\\ =\sqrt{\frac{19}{6}\cdot\left(\frac{8}{5}\cdot\frac{14}{9}\right)^2}\\ =\sqrt{\frac{19}{6}\cdot\frac{112}{45}}\\ =\sqrt{\frac{1064}{135}}\)
Bổ sung câu b :
\(\sqrt{3\frac{1}{16}.2\frac{14}{25}.2\frac{34}{81}}=\sqrt{\frac{49}{16}.\frac{64}{25}.\frac{196}{81}}=\sqrt{\frac{49}{16}}.\sqrt{\frac{64}{25}}.\sqrt{\frac{196}{81}}=\frac{7}{4}.\frac{8}{5}.\frac{14}{9}=\frac{196}{45}\)
Bạn kia làm sai nhé :
a) \(\sqrt{\frac{25}{81}.\frac{16}{49}.\frac{169}{9}}=\sqrt{\frac{25}{81}}.\sqrt{\frac{16}{49}}.\sqrt{\frac{169}{9}}=\frac{5}{9}.\frac{4}{7}.\frac{13}{3}=\frac{260}{189}\)
Rút gọn:
\(\sqrt{17-6\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt{2}+1}}}+1^2\)
\(\sqrt{17-6.\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}+1^2\)
\(=\sqrt{17-6\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}+1\)
\(=\sqrt{17-6\sqrt{2+2\sqrt{2}+1}}+1\)
\(=\sqrt{17-6\sqrt{\left(\sqrt{2}+1\right)^2}}+1\)
\(=\sqrt{17-6\left(\sqrt{2}+1\right)}+1=\sqrt{17-6\sqrt{2}-6}+1\)
\(=\sqrt{11-6\sqrt{2}}+1=\sqrt{\left(3-\sqrt{2}\right)^2}+1=3-\sqrt{2}+1=4-\sqrt{2}\)
Đề như thế này mới đúng nè:
\(\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
= \(\sqrt{17-6\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}\)
= \(\sqrt{17-6\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)
=\(\sqrt{17-6\sqrt{2+\sqrt{8}+1}}\)
= \(\sqrt{17-6\sqrt{2+\sqrt{4}.\sqrt{2}+1}}\)
= \(\sqrt{17-6\sqrt{2+2.\sqrt{2}+1}}\)
= \(\sqrt{17-6\sqrt{\left(\sqrt{2}+1\right)^2}}\)
= \(\sqrt{17-6\left(\sqrt{2}+1\right)}\)
= \(\sqrt{17-6\sqrt{2}-6}\)
= \(\sqrt{11-6\sqrt{2}}\)
= \(\sqrt{9-2.3.\sqrt{2}+2}\)
= \(\sqrt{\left(3-\sqrt{2}\right)^2}\)
= \(3-\sqrt{2}\)
Bà chị chưa làm xong toán thầy ak???
Bài 1: Thực hiện phép tính:
a,\(\left(\frac{-3}{4}+\frac{2}{7}\right):\frac{2}{7}+\left(\frac{-1}{4}+\frac{5}{7}\right):\frac{2}{3}\)
b,\(\left(-\frac{1}{3}\right)^2\cdot\frac{4}{11}+\frac{7}{11}\cdot\left(-\frac{1}{3}\right)^2\)
c, \(\left(-\frac{1}{7}\right)^0-2\frac{4}{9}\cdot\left(\frac{2}{3}\right)^2\)
d,\(\frac{2^7\cdot9^2}{3^3\cdot2^5}\)
e,\(\left(\frac{1}{3}-\frac{5}{6}\right)^2+\frac{5}{6}:2\)
f,\(\left(9\frac{2}{4}:5,2+3.4\cdot2\frac{7}{34}\right):\left(-1\frac{9}{16}\right)\)
g,\(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
h,\(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
i,\(\left(-\frac{1}{2}\right)^4+\left|-\frac{2}{3}\right|-2007^0\)
k,\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
m,\(\left(-3\right)^2\cdot\frac{1}{3}-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
n,\(\frac{\sqrt{3^2+\sqrt{39^2}}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)