\(5\sqrt{\dfrac{4}{3}}=5.\dfrac{\sqrt{4}}{\sqrt{3}}=5.2.\dfrac{1}{\sqrt{3}}=5.2.\dfrac{\sqrt{3}}{\sqrt{3}.\sqrt{3}}=5.2.\dfrac{\sqrt{3}}{3}=5.\dfrac{2}{3}\sqrt{3}\)
\(5\sqrt{\dfrac{4}{3}}=5.\dfrac{\sqrt{4}}{\sqrt{3}}=5.2.\dfrac{1}{\sqrt{3}}=5.2.\dfrac{\sqrt{3}}{\sqrt{3}.\sqrt{3}}=5.2.\dfrac{\sqrt{3}}{3}=5.\dfrac{2}{3}\sqrt{3}\)
D = \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
F = \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
B = \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\)
E = \(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
1, \(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6+\sqrt{6}}{\sqrt{6}}\)
2, \(\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\)
3, \(\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
4, \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
5, \(\left(\dfrac{3\sqrt{125}}{15}-\dfrac{10-4\sqrt{5}}{\sqrt{5}-2}\right)\cdot\dfrac{1}{\sqrt{5}}\)
\(p=\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)
\(Q=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\cdot\left(\sqrt{5}-\sqrt{2}\right)\)
\(R=\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)
\(S=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(T=\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
\(U=\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\right):\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
\(V=\dfrac{2}{\sqrt{3}-1}-\sqrt{\dfrac{2}{6-3\sqrt{3}}}\)
\(W=\dfrac{5\sqrt{3}}{\sqrt{3-\sqrt{5}}-\sqrt{3}}-\dfrac{5\sqrt{3}}{\sqrt{3-\sqrt{5}}+\sqrt{3}}\)
\(Y=\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
\(A=\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}+2\sqrt{2}\\ B=\left(5+2\sqrt{6}\right)\cdot\left(49-20\sqrt{6}\right)\cdot\sqrt{5-2\sqrt{6}}\)
\(C=\dfrac{1}{2}\left(\sqrt{6}+\sqrt{5}\right)^2-\dfrac{1}{4}\sqrt{120}-\sqrt{\dfrac{15}{2}}\)
\(D=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}+\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
CMR: (\(\dfrac{2}{\sqrt{6}-1}+\dfrac{3}{\sqrt{6}-2}+\dfrac{3}{\sqrt{6}-3}\))\(\cdot\dfrac{5}{9\sqrt{6}+4}=\dfrac{1}{2}\)
Giải dùm vs
Tính :
a) \(\dfrac{5}{\sqrt{2}-7}-\dfrac{4}{3\sqrt{2}+5}-\dfrac{7}{4-5\sqrt{2}}\)
b)\(\left(\dfrac{2\sqrt{32}}{\sqrt{3}}-1\right):\left(\dfrac{7\sqrt{2}+\sqrt{2}-\sqrt{3}}{\sqrt{2}}\right)\)
Mọi người giúp mình hai bài này với nhé !!!!!
Rút gọn biểu thức sau
\(a.\dfrac{\sqrt{5}-2}{5+2\sqrt{5}}-\dfrac{1}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}}\)
\(b.\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)
\(c.\dfrac{2\sqrt{3}-4}{\sqrt{3}-1}+\dfrac{2\sqrt{2}-1}{\sqrt{2}-1}-\dfrac{1+\sqrt{6}}{\sqrt{2}+3}\)
Rút gọn biểu thức :
\((5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}+\sqrt{5}}):2\sqrt{5}\) và \(\dfrac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\dfrac{1}{3}}\)