\(A=\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}+2\sqrt{2}\\ B=\left(5+2\sqrt{6}\right)\cdot\left(49-20\sqrt{6}\right)\cdot\sqrt{5-2\sqrt{6}}\)
\(C=\dfrac{1}{2}\left(\sqrt{6}+\sqrt{5}\right)^2-\dfrac{1}{4}\sqrt{120}-\sqrt{\dfrac{15}{2}}\)
\(D=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}+\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(A=\sqrt{8}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =2\sqrt{2}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =4\sqrt{2}+4\sqrt{7}\)
\(B=\left(3+2\sqrt{6}+2\right)\left(25-20\sqrt{6}+24\right)\sqrt{3-2\sqrt{6}+2}\\ =\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\\ =\left(\sqrt{3}+\sqrt{2}\right)\left(3-2\sqrt{6}+2\right)^2\\ =\left(\sqrt{3}-\sqrt{2}\right)^3\\ =9\sqrt{3}-11\sqrt{2}\)
\(C=\dfrac{1}{2}\left(11+2\sqrt{30}\right)-\dfrac{\sqrt{30}}{2}-\dfrac{\sqrt{30}}{2}\\
=\dfrac{11}{2}+\sqrt{30}-\sqrt{30}\\
=\dfrac{11}{2}\)