`= sqrt 3 - 4 sqrt 3 = -3 sqrt 3`
`= sqrt 3 - 4 sqrt 3 = -3 sqrt 3`
tính
\(\left[\sqrt{12}-3\sqrt{75}\right]\cdot\sqrt{3}\)
\(\left[\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right]\cdot2\sqrt{6}\)
\(41\sqrt[9^1]{8\sqrt[2]{\frac{12}{2.85\frac{1\cdot2+3\cdot4+5\cdot6+7\cdot8+9\sqrt[4]{16}}{2\cdot\frac{12}{2}\sqrt{4^2}-7^2}}}4\cdot5\cdot6\cdot7\cdot8\cdot9}\)
1
a/Tìm 3 số x, y, z biết:
\(35+x+y+z=\left(2\sqrt{x+1}+3\sqrt{y+2}+4\sqrt{z+3}\right)\cdot2\)
b/ Tìm nghiệm của phương trình:
\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\)
2
Tính tổng A=\(2016^2-2015^2+2014^2-2013^2+...+2^2-1\)
1. Tính
a) \(\sqrt[3]{(\sqrt{2}+3)(11+6\sqrt{2})}\sqrt[3]{(\sqrt{2}+-3)(11-6\sqrt{2})}\)
b) (\((\sqrt[3]{9}+\sqrt[3]{6}+\sqrt[3]{4})(\sqrt[3]{3}-\sqrt[3]{2})\)
c)\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Tính: \(H=\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}\)
Tính giá trị biểu thức
A = \(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
B = \(\frac{1}{\sqrt{2}-\sqrt{3}}\cdot\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
có ai biết giải bài toán này k giúp mình với ?
1,\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}}\)
2,\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
3,\(\dfrac{3}{\sqrt{6}-\sqrt{3}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
4,\(\left(\sqrt{\dfrac{2}{3}-\sqrt{\dfrac{3}{2}}+\dfrac{5}{\sqrt{6}}}\right):\dfrac{6-\sqrt{6}}{1-\sqrt{6}}\)
5,\(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\times\left(\sqrt{3}+\sqrt{2}\right)\)
6,\(\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
7, \(\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
8,\(\dfrac{4}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\)
9,\(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)
10,\(\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}\)
11,\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}+\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
12,\(\dfrac{\sqrt{3}+2\sqrt{2}+\sqrt{3}-2\sqrt{2}}{\sqrt{3}+2\sqrt{2}-\sqrt{3}-2\sqrt{2}}\)
Tính
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt[]{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(R= \sqrt{2+\sqrt{3}}. \sqrt{2+\sqrt{2 +\sqrt{3}}}. \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Tính :\(R=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)