So sánh \(\dfrac{2019.2020-1}{2019.2020}\) và \(\dfrac{2020.2021-1}{2020.2021}\)
So sánh A=1/1.2+1/2.3+1/3.4+...+1/2019.2020+1/2020.2021 với 1
Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}+\dfrac{1}{2020\cdot2021}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2021}\)
\(=\dfrac{1}{1}-\dfrac{1}{2021}=\dfrac{2021}{2021}-\dfrac{1}{2021}\)
\(=\dfrac{2020}{2021}\)
mà \(\dfrac{2020}{2021}< \dfrac{2021}{2021}=1\)
nên A<1
1.2.3.4.....2020.2021-1.2.3.4...2019.2020-1.2.3.4...2019.2020^2
so sánh A và B biết:
A=\(\dfrac{2^{2018}}{2^{2018}+3^{2019}}\)+\(\dfrac{3^{2019}}{3^{2019}+5^{2020}}\)+\(\dfrac{5^{2020}}{5^{2020}+2^{2018}}\)
B=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{5.6}\)+...+\(\dfrac{1}{2019.2020}\).
\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)
\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)
=>B<1
=>A>B
Chứng minh rằng
\(\dfrac{1}{2020.2021}=\dfrac{1}{2020-2021}\)
\(\dfrac{1}{2020}-\dfrac{1}{2021}=\dfrac{2021}{2020.2021}-\dfrac{2020}{2020.2021}=\dfrac{2021-2020}{2020.2021}=\dfrac{1}{2020.2021}\)
\(\dfrac{1}{2020\cdot2021}=\dfrac{2021-2020}{2020\cdot2021}=\dfrac{1}{2020}-\dfrac{1}{2021}\)(đpcm)
A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{2019.2020}\)
Tìm A?
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\\ =\dfrac{1}{1}-\dfrac{1}{2020}=\dfrac{2019}{2020}\)
A=1-1/2+1/2-1/3+...+1/2019-1/2020
A=1-1/2020
A=2019/2020
Tính tổng :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{2020.2021}+\dfrac{1}{2021.2022}\)
Dấu chấm là dấu nhân
Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2020\cdot2021}+\dfrac{1}{2021\cdot2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
1/1x2+1/2x3+1/3x4+...+1/2020x2021+1/2021x2022
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2020-1/2021+1/2021-1/2022.
=1/1-1/2022
=2021/2022
Cho S= 1/2.3 + 1/4.5 + 1/6.7 +...+ 1/2020.2021 + 1/2022.2023. SO SÁNH S và 1011/2023
AI ĐÚNG MIK TICK NHƯNG PHẢI NHANH NHA!
S=1/2x3+1/4x5+1/6x7+...+1/2022x2023<1/2x3+1/3x4+1/4x5+...+1/1010x1011
=1/2-1/1011=1009/2022<1011/2023
=>S<1011/2023
S= 1/2.3 + 1/4.5 + 1/6.7 +.....+ 1 2020.2021 + 1 2022.2023 . : So sánh S và 1011/2023
so sánh
A=1.2/2.2.2.3/3.3.3.4/4.4.4.5/5.5. .......... . 2020.2021/2021.2021
với
B=2020.2021-2020.2020/2020.2019+2020.2
Gấppppppppppppppp
\(A=\frac{1.2}{2.2}\cdot\frac{2.3}{3.3}\cdot\frac{3.4}{4.4}\cdot...\cdot\frac{2020.2021}{2021.2021}\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2020}{2021}\)
\(A=\frac{1.2.3.....2020}{2.3.4.....2021}\)
\(A=\frac{1}{2021}\)
\(B=\frac{2020.2021-2020.2020}{2020.2019+2020.2}\)
\(B=\frac{2020.\left(2021-2020\right)}{2020.\left(2019+2\right)}\)
\(B=\frac{1}{2021}\)
Từ đó ta thấy 2 biểu thức bằng nhau
Không tính hãy so sánh A= 2019.2020 và B= 2000.2009
trả lời:
Đương nhiên là A sẽ lớn hơn B vì các thừa số của A lớn hơn các thừa số của B.
Vậy A>B
học tốt nha bạn!
vì 2020>2019>2009>2000nen a>b
chúc học tốt...................
TL :
A > B
Nhìn 2 thừa số của 2 vế là biết
Hk tốt