2cos2 x - có x -1=0
Phương trình 2cos2 x + 3cosx - 2 = 0 có nghiệm là
Giải phương trình : cos2x + cosx = 2cos2\(\dfrac{x}{2}\)
\(\Leftrightarrow2cos^2x-1+cosx=cosx+1\)
\(\Leftrightarrow2cos^2x=2\)
\(\Leftrightarrow sin^2x=0\)
\(\Leftrightarrow sinx=0\)
\(\Leftrightarrow x=k\pi\)
Hàm số y = 2cos2 x + 3cos3x + 8cos4x tuần hoàn với chu kì
A. π
B. 2π
C. 3π
D. 4π
Đáp án B
+ y = 2 cos2 x + 3cos3x + 8cos4x = 4 + 9/4 cos x + 5cos 2x + 3/4 cos 3x + cos 4x
+ Hàm số y = 9/4cos x tuần hoàn với chu kì 2π.
+ Hàm số y = 5cos 2x tuần hoàn với chu kì 2π/2 = π .
+ Hàm số y = 3/4 cos 3x tuần hoàn với chu kì 2π/3.
+ Hàm số y = cos 4x tuần hoàn với chu kì 2π/4 = π/2.
+ Do đó hàm số y = 2 cos2 x + 3cos3x + 8cos4x là hàm tuần hoàn với chu kì 2π.
Chú ý:
cos(4x) + cos(2x) +sin(2x) +2 = 2\(\sqrt{2}\) sin(x+π/4)+2cos2(2x)
Nghiệm của phương trình 2 cos 2 ( 2 x + π 3 ) + 3 cos ( 2 x + π 3 ) - 5 = 0 trong khoảng - 3 π 2 ; 3 π 2 là:
sin5x+sin3x+2cos2=1+sin4x
\(\sin\left(5x\right)+\sin\left(3x\right)+2\cos\left(x\right)=1+\sin\left(4x\right)\)
\(\Leftrightarrow2\sin\left(4x\right)\cos\left(x\right)-\sin\left(4x\right)+2\cos\left(x\right)-1=0\)
\(\Leftrightarrow\sin\left(4x\right)(2\cos\left(x\right)-1)+(2\cos\left(x\right)-1)=0\)
\(\Leftrightarrow(2\cos\left(x\right)-1)(\sin\left(4x\right)+1)=0\)
\(\Rightarrow\left[{}\begin{matrix}\cos\left(x\right)=\dfrac{1}{2}\\\sin\left(4x\right)=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\4x=\dfrac{-\pi}{2}+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{-\pi}{8}+k\dfrac{\pi}{2}\end{matrix}\right.\)
chứng minh:
\(\dfrac{2cos2\alpha-sin4\alpha}{2cos2\alpha+sin4\alpha}=tan^2\left(\dfrac{\pi}{4}-\alpha\right)\)
chứng minh:
\(\dfrac{1}{sin\alpha}+\dfrac{1}{sin2\alpha}+\dfrac{1}{sin4\alpha}+....+\dfrac{1}{sin2^n.\alpha}=\dfrac{cot\alpha}{2}-2cos2^n\alpha\)
Cường độ của một dòng điện xoay chiều qua điện trở R = 10 Ω có biểu thức i = 2 cos 2 ( 100 πt ) + 4 cos 3 ( 100 πt ) ( A ) . Cường độ này có giá trị trung bình trong một chu kì bằng bao nhiêu? Tính cường độ hiệu dụng, công suất tỏa nhiệt và nhiệt lượng tỏa ra trên R trong thời gian 1 phút.
A. 3900J
B. 4000J
C. 2000J
D. Không đáp án nào đúng
Tìm m để :
1) (m + 1)\(x^2\) - 2(m + 1)x + 3m - 3 < 0 có nghiệm
2) \(x^2\) + 2(m + 2)x - 2m - 1 > 0 có nghiệm
3) (m-1)\(x^2\) - 2(m + 1)x + 3m - 6 ≤ 0 có nghiệm
a.
- Với \(m=-1\) BPT có nghiệm (đúng với mọi x)
- Với \(m\ne-1\) BPT có nghiệm khi:
\(\left[{}\begin{matrix}m+1< 0\\\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(3m-3\right)>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(4-2m\right)>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\\left\{{}\begin{matrix}m>-1\\-1< m< 2\end{matrix}\right.\end{matrix}\right.\)
Kết hợp lại ta được: \(m< 2\)
b.
Do \(a=1>0\) nên BPT có nghiệm với mọi m
c.
- Với \(m=1\) BPT có nghiệm
- Với \(m\ne1\) BPT có nghiệm khi:
\(\left[{}\begin{matrix}m-1< 0\\\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(3m-6\right)\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m>1\\-2m^2+11m-5\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m>1\\\dfrac{1}{2}\le m\le5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< 1\\1< m\le5\end{matrix}\right.\)
Kết hợp lại ta được: \(m\le5\)