Tinh \(\left(a-b\right)^2\)biet \(a+b=8\)va \(ab=10\)
Cho a,b\(\in R\) thoa man \(a^2+b^2=2\left(8+ab\right)\) va \(a< b\) Tinh P=\(a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)+64\)
Theo đề ra ta có : a2+b2=2(8+ab)
⇔a2+b2-2ab=16
⇔(a-b)2=16
⇔a-b=4
Ta có P=
⇔P=a3+a2-b3+b2+ab-3a2b+3ab2-3ab+64
⇔P=(a3-b3)+(a2-2ab+b2)-(3a2b-3ab2)+64
⇔P=(a-b)(a2+ab+b2)+(a-b)2-3ab(a-b)+64
⇔P=(a-b)(a2+ab+b2+1-3ab)+64
⇔P=4[(a-b)2+1]+64
⇔P=4(16+1)+64= 132
⇔P= 132
a, biet x+y=0
tinh gia tri bieu thuc : M=\(x^4-xy^3+x^3y-y^4-1\)
b, biet xyz=2 va x+y+z=0
tinh gia tri bieu thuc : M= \(\left(x+y\right)\left(y+2\right)\left(x+2\right)\)
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
Câu 1: Tim x, y biet:
a) \(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(\dfrac{-1}{8}\right)\)
Câu 2: Tim cac so a,b biet:
\(\dfrac{a}{2}=\dfrac{b}{3}\) va \(a+b=-15\)
Câu 3: Tim x \(\in\) Q biet:
\(\left(x+1\right)\left(x-2\right)< 0\)
Câu 4: Thuc hien phep tinh:
\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9\)
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)
Cho \(a\left(a^2-3b^2\right)=5\) va \(b\left(b^2-3a^2\right)=10.\). Tinh \(S=a^2+b^2\)
biet a^2+b^2=13 va ab=6. tinh a+b
1) CMR \(\frac{X^{32}+X^{16}+1}{X^2+X+1}\)= \(\left(X^2-X+1\right)\left(X^4-X^2+1\right)\left(X^8-X^4+1\right)\left(X^{16}-X^8+1\right)\)
2)\(Tinh\left(a-b\right)^{2017}Biet\left(a+b\right)=7;a.b=12\)(a<b)
Biet a+b=5 va ab=2. Tinh (a-b)2
\(\left(a-b\right)^2=a^2-2ab+b^2=a^2+2ab+b^2-4ab=\left(a+b\right)^2-4ab\)
= 52-4.2=25-8=17
biet a+b=4 Tinh GTLN cua A = \(2\left(a^3b+ab^3\right)\)
a+b=4
<=> a^2 + b^2 +2ab=16
<=> a^2 +b^2 = 16 - 2ab (1)
Ta có A=2(a^3.b + a.b^3)
<=> A= 2.a.b.(a^2 +b^2)
Từ (1) => A= 2a.b.(16 -2a.b)
<=> A=-4.a^2.b^2 + 32.a.b
<=> A = -4a^2.b^2 + 32a.b - 64 +64
<=> A= -4.(a.b - 4)^2 +64
.........
(Tự làm)
mot nguoi di xe may tu A luc 8 gio 30 phut va den b luc 10 gio biet quang duong ab dai 50 km . tinh van toc cua xe may biet rang giua duong di co dung lai nghi 15 phut
Thời gian người đó đi được 50 km là :
10h - 8h 30p - 15p = 75p = 1,25h
Vận tốc của xe là :
50 : 1,25 = 40 km/h
Đ/S: ...