Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 8 2023 lúc 14:49

\(B=\dfrac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}}{x-1}:\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}+\sqrt{x}}{x-1}\cdot\dfrac{x-1}{x+2\sqrt{x}+1-x+2\sqrt{x}-1}\)

\(=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}\)

HT.Phong (9A5)
27 tháng 8 2023 lúc 14:56

\(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left[\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)

\(B=\left[\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(B=\dfrac{x+2\sqrt{x}+\sqrt{x}+1+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(B=\dfrac{2x+2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4\sqrt{x}}\)

\(B=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}\)

manh
Xem chi tiết
HT.Phong (9A5)
8 tháng 10 2023 lúc 7:07

a) \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) \(\left(x\ge0;x\ne4\right)\)

\(=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}}\) (\(x>0\))

\(=\left[\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)^2}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(x+2\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{x\sqrt{x}+2x+\sqrt{x}}\)

HT.Phong (9A5)
8 tháng 10 2023 lúc 7:16

c) \(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\) (\(x\ge0;x\ne1\))

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

d) \(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\) \(\left(a\ne1;a\ge0\right)\)

\(=\left[\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a\sqrt{a}}{a-1}\right]:\dfrac{\sqrt{a}+1+\sqrt{a}-1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2-a\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}:\dfrac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{a+2\sqrt{a}+1-a\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\)

\(=\dfrac{a-a\sqrt{a}+2\sqrt{a}+1}{2\sqrt{a}}\)

Gút Boy
Xem chi tiết
Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 7:38

Bạn đăng từng câu 1 nhé

Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 11:03

a: \(P=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: \(=\dfrac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)

\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)

minh ngọc
Xem chi tiết
HT.Phong (9A5)
31 tháng 8 2023 lúc 13:24

\(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{x-2\sqrt{x}+1}{x-1}\) (ĐK: \(x>0;x\ne4\))

\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]:\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(A=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(A=\dfrac{2\sqrt{x}}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(A=\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(A=\dfrac{2\sqrt{x}+2}{\sqrt{x}-1}\)

Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 23:09

\(=\dfrac{x+\sqrt{x}-3\sqrt{x}+1}{x-1}:\dfrac{x+2\sqrt{x}+1-4\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

Lizy
Xem chi tiết
HT.Phong (9A5)
21 tháng 9 2023 lúc 5:36

\(\dfrac{1}{\sqrt{x}+2}>\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{5}>0\)

\(\Leftrightarrow\dfrac{5}{5\sqrt{x}+10}-\dfrac{\sqrt{x}+2}{5\sqrt{x}+10}>0\)

\(\Leftrightarrow\dfrac{5-\sqrt{x}-2}{5\sqrt{x}+10}>0\)

\(\Leftrightarrow\dfrac{-\left(\sqrt{x}-3\right)}{5\sqrt{x}+10}>0\)

Mà: \(5\sqrt{x}+10\ge10>0\forall x\)

\(\Leftrightarrow\sqrt{x}>3\)

\(\Leftrightarrow x>9\)

_________

\(\dfrac{2}{\sqrt{x}+3}< \dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{4}{2\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+6}< 0\)

\(\Leftrightarrow\dfrac{4-\sqrt{x}-3}{2\sqrt{x}+6}< 0\)

\(\Leftrightarrow\dfrac{-\left(\sqrt{x}-1\right)}{2\sqrt{x}+6}< 0\)

Mà: \(2\sqrt{x}+6\ge6>0\forall x\)

\(\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow\sqrt{x}< 1\)

\(\Leftrightarrow x< 1\)

\(\Leftrightarrow0\le x\le1\)

....
Xem chi tiết
An Thy
22 tháng 6 2021 lúc 18:40

\(P=\left(\dfrac{\sqrt[4]{x^2}-\sqrt[4]{x}}{1-\sqrt[4]{x}}+\dfrac{1+\sqrt{x}}{\sqrt[4]{x}}\right)^2-\dfrac{\sqrt{1+\dfrac{2}{\sqrt{x}}+\dfrac{1}{x}}}{1+\sqrt{x}}\)

\(=\left(\dfrac{\sqrt[4]{x}\left(\sqrt[4]{x}-1\right)}{1-\sqrt[4]{x}}+\dfrac{1+\sqrt{x}}{\sqrt[4]{x}}\right)^2-\dfrac{\sqrt{\left(\dfrac{1}{\sqrt{x}}+1\right)^2}}{1+\sqrt{x}}\)

\(=\left(-\sqrt[4]{x}+\dfrac{1+\sqrt{x}}{\sqrt[4]{x}}\right)^2-\dfrac{\dfrac{1}{\sqrt{x}}+1}{1+\sqrt{x}}\)

\(=\left(\dfrac{1}{\sqrt[4]{x}}\right)^2-\dfrac{\dfrac{\sqrt{x}+1}{\sqrt{x}}}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}}=0\)

Thanh Mai Đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2022 lúc 14:10

Bài 1: 

a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)

Do đó: A>=0

Ngọc Vũ
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 10 2021 lúc 11:48

\(A_1=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(A_2=\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]:\dfrac{x-\sqrt{x}+1}{x+1}\\ A_2=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x-\sqrt{x}+1}\\ A_2=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)

Lê Kiều Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2021 lúc 20:09

a: \(P=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}}{x\sqrt{x}-1}\)

Ngọc May
13 tháng 3 2022 lúc 19:29

a, Với x ≥ 0, x ≠1 
P= [ \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] : \(\dfrac{\sqrt{x}-1}{2}\)  = 
\(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)]
\(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\):\(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
P= \(\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có : \(x+\sqrt{x}+1=\left(\sqrt{x}\right)^2+2.\dfrac{1}{2}.\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}\)= (\(\sqrt{x}+\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\) >\(0\)  ∀ x
=> \(\dfrac{3}{x+\sqrt{x}+1}>0\) ∀ x

=> P > 0 với mọi x ≥ 0 và x ≠ 1