Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hà Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2023 lúc 14:32

a: ĐKXĐ: x>=3

Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)

=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)

=>\(\dfrac{3}{2}\sqrt{x-3}=3\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7(nhận)

b: ĐKXĐ: x>=0

\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)

=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)

=>\(7\sqrt{x}-5< =0\)

=>\(\sqrt{x}< =\dfrac{5}{7}\)

=>0<=x<=25/49

c: ĐKXĐ: x>=5

\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)

=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)

=>\(\dfrac{3}{2}\sqrt{x-5}=3\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

Khánh An Ngô
Xem chi tiết
HT.Phong (9A5)
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Khánh An Ngô
Xem chi tiết
Võ Việt Hoàng
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Võ Việt Hoàng
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Phương Nhi Nguyễn
Xem chi tiết
nthv_.
15 tháng 10 2021 lúc 23:45
Ly Ly
Xem chi tiết
Yeutoanhoc
29 tháng 6 2021 lúc 7:56

`a)sqrt{x^2-6x+9}=2`

`<=>sqrt{(x-3)^2}=2`

`<=>|x-3|=2`

`**x-3=2`

`<=>x=5`

`**x-3=-2`

`<=>x=1`

Vậy `S={1,5}`

`b)sqrt{4x-20}+sqrt{x-5}-1/3sqrt{9x-45}=4`

đk:`x>=5`

`pt<=>2sqrt{x-5}+sqrt{x-5}-1/3*3*sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4<=>x=9`

Vậy `S={9}`

Akai Haruma
29 tháng 6 2021 lúc 7:54

Lời giải:

a.

PT $\Leftrightarrow \sqrt{(x-3)^2}=2$

$\Leftrightarrow |x-3|=2$

$\Leftrightarrow x-3=\pm 2$

$\Leftrightarrow x=1$ hoặc $x=5$

b. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4(x-5)}+\sqrt{x-5}-\frac{1}{3}\sqrt{9(x-5)}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x=2^2+5=9$ (thỏa mãn)

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 23:09

a) ĐKXĐ: \(x\ge0\)

Ta có: \(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)

\(\Leftrightarrow9\sqrt{2x}-10\sqrt{2x}+20\sqrt{2x}=38\)

\(\Leftrightarrow19\sqrt{2x}=38\)

\(\Leftrightarrow\sqrt{2x}=2\)

\(\Leftrightarrow2x=4\)

hay x=2(thỏa ĐK)

b) ĐKXĐ: \(x\ge0\)

Ta có: \(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)

\(\Leftrightarrow6\sqrt{3x}-6\sqrt{3x}+4\sqrt{3x}=8\)

\(\Leftrightarrow\sqrt{3x}=2\)

\(\Leftrightarrow3x=4\)

hay \(x=\dfrac{4}{3}\)

c) ĐKXĐ: \(x\ge5\)

Ta có: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

hay x=9

hnamyuh
2 tháng 7 2021 lúc 23:13

a)

\(3.3\sqrt{2x}-5.2\sqrt{2x}+4.5.\sqrt{2x}=38\\ \Leftrightarrow19\sqrt{2x}=38\\ \Leftrightarrow\sqrt{2x}=2\\ \Leftrightarrow x=2\)

b)

\(3.2.\sqrt{3x}-2.3.\sqrt{3x}+4.\sqrt{3x}=8\\ \Leftrightarrow4\sqrt{3x}=8\\ \Leftrightarrow\sqrt{3x}=2\\\Leftrightarrow x=\dfrac{2^2}{3}=\dfrac{4}{3} \)

c)

\(\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\)

huy tạ
Xem chi tiết
nthv_.
14 tháng 11 2021 lúc 19:53

\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(2\sqrt{x-5}=4\)

\(\sqrt{x-5}=2\)

\(\left\{{}\begin{matrix}2>0\left(luondung\right)\\x-5=4\end{matrix}\right.\)\(\Rightarrow x=9\left(tm\right)\)

Bống
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 22:42

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

Akai Haruma
8 tháng 10 2021 lúc 8:13

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

Akai Haruma
8 tháng 10 2021 lúc 8:16

c. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4$

$\Leftrightarrow 2\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}=2$

$\Leftrightarrow x-1=4$

$\Leftrightarrow x=5$ (tm)

d. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4}{9}}\sqrt{x-2}+\sqrt{9}.\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{1}{2}\sqrt{x-2}-\frac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{5}{6}\sqrt{x-2}-5=0$

$\Leftrightarrow \sqrt{x-2}=6$

$\Leftrightarrow x-2=36$

$\Leftrightarrow x=38$ (tm)

 

Mỹ Hạnh
Xem chi tiết
TAPN
29 tháng 6 2017 lúc 21:46

a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)

\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)

\(\Leftrightarrow9x-\left|7x+5\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow x=6\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)

b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)

\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)

\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)

\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)

\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)

\(\Leftrightarrow-5=21-8\sqrt{x+5}\)

\(\Leftrightarrow8\sqrt{x+5}=21+5\)

\(\Leftrightarrow8\sqrt{x+5}=26\)

\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)

\(\Leftrightarrow x+5=\dfrac{169}{16}\)

\(\Leftrightarrow x=\dfrac{169}{16}-5\)

\(\Leftrightarrow x=\dfrac{89}{16}\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)