\(\dfrac{7}{2}+\left|x+\dfrac{1}{2}\right|=\dfrac{9}{2}\)
giúp mình nha mình đang cần gấp á
Giúp mình với, mình đang cần gấp
\(\dfrac{x^3}{1-x}\) + x2 + x + 1
\(\dfrac{2x}{x^2+4x+4}\) + \(\dfrac{x+1}{x+2}\) + \(\dfrac{2-x}{\left(x+2\right)^2}\)
Xin cảm ơn <3
\(a,=\dfrac{x^3-\left(x-1\right)\left(x^2+x+1\right)}{1-x}=\dfrac{x^3-x^3+1}{1-x}=\dfrac{1}{1-x}\\ b,=\dfrac{2x+x^2+3x+2+2-x}{\left(x+2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x+2\right)^2}=1\)
\(3^{2x-1}+2.9^{x-1}=405\)
\(\left(\dfrac{1}{3}\right)^{x-1}+5.\left(\dfrac{1}{3}\right)^{x+1}=\dfrac{14}{9^3}\)
\(\dfrac{3}{5}.\left(3x^3-\dfrac{8}{9}\right)-\dfrac{1}{2}.\left(\dfrac{3}{2}-1\right)=-\dfrac{1}{4}\)
Tìm x ( Giúp với mình cần gấp )
Để giải phương trình, ta sẽ thực hiện các bước sau: Bước 1: Giải các phép tính trong phương trình. 32x^(-1) + 2.9x^(-1) = 405(13)^(-1) + 5.(13)^2 + 1 = 1493(31)^(-1) + 5.(31)^2 + 1 = 9314(35)^(-1) Bước 2: Rút gọn các số hạng. 32x^(-1) + 2.9x^(-1) = 405/13 + 5.(13)^2 + 1 = 1493/31 + 5.(31)^2 + 1 = 9314/35 Bước 3: Đưa các số hạng về cùng mẫu số. 32x^(-1) + 2.9x^(-1) = (405/13).(31/31) + 5.(13)^2 + 1 = (1493/31).(13/13) + 5.(31)^2 + 1 = 9314/35 Bước 4: Tính toán các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/13.(31) + 5.(13)^2 + 1 = 1493.(13)/31.(13) + 5.(31)^2 + 1 = 9314/35 Bước 5: Tính tổng các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/403 + 5.(13)^2 + 1 = 1493.(13)/403 + 5.(31)^2 + 1 = 9314/35 Bước 6: Đưa phương trình về dạng chuẩn. 32x^(-1) + 2.9x^(-1) - 9314/35 = 0 Bước 7: Giải phương trình. Để giải phương trình này, ta cần biến đổi nó về dạng tương đương. Nhân cả hai vế của phương trình với 35 để loại bỏ mẫu số. 35.(32x^(-1) + 2.9x^(-1) - 9314/35) = 0 1120x^(-1) + 101.5x^(-1) - 9314 = 0 Bước 8: Tìm giá trị của x. Để tìm giá trị của x, ta cần giải phương trình này. Tuy nhiên, phương trình này không thể giải được vì x có mũ là -1.
1. Rút gọn phân thức \(\dfrac{\left(x+y\right)^2}{x^2-y^2}=\) ta được kết quả là:
2. Rút gọn phân thức \(\dfrac{x^2-3x}{x^2-9}=\)
giúp mình với nhé mình đang cần gấp ạ
1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)
tìm x biết
\(\dfrac{7}{9}:\left(2+\dfrac{3}{4}.x\right)+\dfrac{5}{9}=\dfrac{23}{27}\)
|x|\(-\dfrac{3}{4}=\dfrac{5}{3}\)
\(\left|2.x-\dfrac{1}{3}\right|+\dfrac{5}{6}=1\)
giúp mk vs nhanh lên mình đang bận
b) Ta có: \(\left|x\right|-\dfrac{3}{4}=\dfrac{5}{3}\)
\(\Leftrightarrow\left|x\right|=\dfrac{5}{3}+\dfrac{3}{4}=\dfrac{20}{12}+\dfrac{9}{12}=\dfrac{29}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{12}\\x=-\dfrac{29}{12}\end{matrix}\right.\)
c) Ta có: \(\left|2x-\dfrac{1}{3}\right|+\dfrac{5}{6}=1\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=\dfrac{1}{6}\\2x-\dfrac{1}{3}=\dfrac{-1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{6}+\dfrac{1}{3}=\dfrac{1}{2}\\2x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{1}{12}\end{matrix}\right.\)
A=\(|x-9|+7\) khi \(x\ge9\)
B=\(|-3x|-8x^2+x-2\) khi \(x< 0\)
C=\(3x+|x-1|-2\)
D=\(\dfrac{x^2-|2x|+1}{\left(x+1\right)|-x|}\) khi x<0
mình đg cần cần gấp, giúp mình nha
Tìm m để phương trình: \(\left(m+1\right)x^2-2\left(m-1\right)x+m-2=0\) có 2 nghiệm thoả mãn \(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=-4\) .
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
ĐKXĐ: m<>-1
Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(m-2\right)\)
\(=\left(2m-2\right)^2-4\left(m^2-m-2\right)\)
\(=4m^2-8m+4-4m^2+4m-8\)
\(=-4m-4\)
Để phương trình có hai nghiệm phân biệt thì -4m-4>0
hay m<-1
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m-2}{m+1}\\x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\end{matrix}\right.\)
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)
\(\Leftrightarrow\left(\dfrac{2m-2}{m+1}\right)^2-6\cdot\dfrac{m-2}{m+1}=0\)
\(\Leftrightarrow\left(2m-2\right)^2-6\left(m^2-m-2\right)=0\)
\(\Leftrightarrow4m^2-8m+4-6m^2+6m+12=0\)
\(\Leftrightarrow-2m^2-2m+16=0\)
\(\Leftrightarrow m^2-m-8=0\)
Đến đây bạn tự giải nhé
PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(m-2\right)\left(m+1\right)\ge0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m+8\ge0\\ \Leftrightarrow12-4m\ge0\\ \Leftrightarrow m\le3\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)
\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=-4\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-4\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=-4x_1x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2=-2x_1x_2\\ \Leftrightarrow\dfrac{4\left(m-1\right)^2}{\left(m+1\right)^2}=\dfrac{4-2m}{m+1}\\ \Leftrightarrow4\left(m-1\right)^2=\left(4-2m\right)^2\\ \Leftrightarrow4m^2-8m+4=16-16m+4m^2\\ \Leftrightarrow8m=12\Leftrightarrow m=\dfrac{3}{2}\left(tm\right)\)
Tìm x:
-x - \(\dfrac{1}{9}\) = -\(\dfrac{2}{45}\)
Giúp mình với nha. Mình đang cần gấp. Cảm ơn các bạn nhiều!!!
x=2/45+1/9
x=7/45
Mình tưởng -\(\frac{2}{45}\)
a, x =\(\dfrac{-2}{7}\) +\(\dfrac{9}{7}\)
b,\(\dfrac{x}{3}\) =\(\dfrac{2}{5}\) +\(\dfrac{-4}{3}\)
Làm giúp mik vs mình đang cần gấp!
a) \(x=\dfrac{-2}{7}+\dfrac{9}{7}=1\)
b) \(\dfrac{x}{3}=\dfrac{2}{5}+\dfrac{-4}{3}\)
\(\dfrac{x}{3}=\dfrac{-14}{15}\)
\(\Rightarrow x=\dfrac{3.-14}{15}=\dfrac{-14}{5}\)
\(x=\dfrac{-2}{7}+\dfrac{9}{7}\)
\(x=1\)
Mọi người ơi, giúp mình nhanh bài này với ạ, mình đang cần gấp ạ. Cảm ơn mng nhiều!!
\(\left(\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}\right):\left(1-\dfrac{2}{\sqrt{a}+2}\right)\)
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\end{matrix}\right.\)
Mình đang cần gấp lắm, các bạn giúp mình với. Cảm ơn!
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v