-6(1,5-2x)=3(-15+2x)
Giải phương trình: -6(1,5 – 2x) = 3(-15 + 2x)
-6(1,5 – 2x) = 3(-15 + 2x)
⇔ -6.1,5 + (-6).(-2x) = 3.(-15) + 3.2x
⇔ -9 + 12x = -45 + 6x
⇔ 12x – 6x = -45 + 9
⇔ 6x = -36
⇔ x = -6.
Vậy phương trình có nghiệm x = -6.
1) 3 - 2x + 4 + 6x = x + 7 + 3x
2) -6(1,5 - 2x) = 3(-15 + 2x)
3) 3(2x - 5) + 5(x -1) = 4(x + 1)
1/ 3-2x+4+6x=x+7+3x
⇔-2x+6x-x-3x=0
⇔0x=0 (Vô số nghiệm)
2/-6(1,5-2x)=3(-15+2x)
⇔-9+12x=-45+6x
⇔6x+36=0
⇔6(x+6)=0
⇔x+6=0
⇔x=-6
Vậy S ϵ {-6}
3/ 3(2x-5)+5(x-1)=4(x+1)
⇔6x-15+5x-5=4x+4
⇔7x=24
⇔x=\(\dfrac{24}{7}\)
Vậy S ϵ {\(\dfrac{24}{7}\)}
1) Ta có: \(3-2x+4+6x=x+7+3x\)
\(\Leftrightarrow4x+7=4x+7\)
\(\Leftrightarrow4x+7-4x-7=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
2) Ta có: \(-6\cdot\left(1.5-2x\right)=3\left(-15+2x\right)\)
\(\Leftrightarrow-9+12x=-45+6x\)
\(\Leftrightarrow12x-9+45-6x=0\)
\(\Leftrightarrow6x+36=0\)
\(\Leftrightarrow6x=-36\)
hay x=-6
Vậy: S={-6}
3) Ta có: \(3\left(2x-5\right)+5\left(x-1\right)=4\left(x+1\right)\)
\(\Leftrightarrow6x-15+5x-5=4x+4\)
\(\Leftrightarrow11x-20-4x-4=0\)
\(\Leftrightarrow7x-24=0\)
\(\Leftrightarrow7x=24\)
\(\Leftrightarrow x=\dfrac{24}{7}\)
Vậy: \(S=\left\{\dfrac{24}{7}\right\}\)
1) 3 - 2x + 4 + 6x = x + 7 + 3x
⇔-2x + 6x - x - 3x = 7 - 3 - 4
⇔0x = 0
⇔x ∈ R
Vậy ...
2) -6(1,5 - 2x) = 3(-15 + 2x)
⇔-9 + 12x = -45 + 6x
⇔6x = -36
⇔x = -6
Vậy ...
Giải các phương trình: -6(1,5 - 2x) = 3(-15 + 2x)
-6(1,5 - 2x) = 3(-15 + 2x)
⇔ -9 + 12x = -45 + 6x
⇔ 12x - 6x = -45 + 9
⇔ 6x = -36
⇔ x = -6
Vậy phương trình có nghiệm duy nhất x = -6
pt cao siêu vcll súc vật như paiN Éo thỂ nàO giẢi đượC
Tìm x
a) ( 2x -1)+3/15= 3/2
b) x+ 46/15= 1,5
c) ( -2x +1) + 3/15= 5/3
d) -13/3 -2x -1= 0,6
e) 3x -1/2x = 7/2-3
f) x÷5=6÷7
g) 2x-1/3 = 16/3
a) \(\left(2x-1\right)+\frac{3}{15}=\frac{3}{2}\)
\(\Rightarrow2x-1=\frac{3}{2}-\frac{3}{15}=\frac{13}{10}\)
\(\Rightarrow2x=\frac{13}{10}+1=\frac{23}{10}\)
\(\Rightarrow x=\frac{23}{20}\)
b) \(x+\frac{46}{15}=1,5\)
\(\Rightarrow x+\frac{46}{15}=\frac{3}{2}\)
\(\Rightarrow x=\frac{3}{2}-\frac{46}{15}\)
\(\Rightarrow x=\frac{-47}{30}\)
c) \(\left(-2x+1\right)+\frac{3}{15}=\frac{5}{3}\)
\(\Rightarrow-2x+1=\frac{5}{3}-\frac{3}{15}=\frac{22}{15}\)
\(\Rightarrow-2x=\frac{7}{15}\Rightarrow x=\frac{-7}{30}\)
giải các phương trình
a,3x-2=2x-3
b,3-4u+24+6u=u+27+3u
c,5-(x-6)=4(3-2x)
d,-6(1,5-2x)=3(-15+2x)
e,0,1-2(0,5-0,1)=2(t-2,5)-0,7
a, 3x -2 = 2x - 3
=> 3x - 2x = 2 - 3
=> x= - 1
b, là tương tự câu a
các câu sau bạn nhân phá ra mà giải nhé
a, 3x - 2 = 2x - 3
3x - 2x = -3 + 2
x = -1
b, 3 - 4u + 24 + 6u = u + 27 + 3u
-4u + 6u - u - 3u = 27 - 3 - 24
-2u = 0
u = 0 : (-2)
u = 0
c, 5 - (x - 6) = 4(3 - 2x)
5 - x + 6 = 12 - 8x
-x + 8x = 12 - 5 - 6
7x = 1
x = 1/7
d, -6(1,5 - 2x) = 3(-15 + 2x)
-9 + 12x = -45 + 6x
12x - 6x = -45 + 9
6x = -36
x = (-36) : 6
x = -6
e, 0,1 - 2(0,5 - 0,1) = 2(t - 2,5) - 0,7
0,1 - 1 + 0,2 = 2t - 5 - 0,7
-2t = -5 - 0,7 - 0,1 + 1 - 0,2
-2t = -5
t = -5/-2
t = 5/2
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = -3 + 2
⇔ x = -1
Vậy phương trình có nghiệm duy nhất x = -1.
b) 3 - 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u - 4u = 27 - 27
⇔ -2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
c) 5 - (x - 6) = 4(3 - 2x)
⇔ 5 - x + 6 = 12 - 8x
⇔ -x + 11 = 12 - 8x
⇔ -x + 8x = 12 - 11
⇔ 7x = 1
⇔ x = 17
Vậy phương trình có nghiệm duy nhất x = 17.
d) -6(1,5 - 2x) = 3(-15 + 2x)
⇔ -9 + 12x = -45 + 6x
⇔ 12x - 6x = -45 + 9
⇔ 6x = -36
⇔ x = -6
Vậy phương trình có nghiệm duy nhất x = -6
Gỉai các phương trình sau:
a)3-4u+24+6u=u+27+3u
b)-6(1,5-2x)=3(-15+2x)
c)0,1-2(0,5t-0,1)=2(t-2,5)-0,7
a) 3 -4u + 24 + 6u = u + 27 +3u
=> -21 +2u = 27 +4 u
=> -2u = 48
=> u = -24
b) -6(1.5 -2x ) = 3( -15 +2x )
=> -9 +12x = -30 + 6x
=> 6x = -21
=> x = \(\frac{-7}{3}\)
c ) 0.1 -2( 0.5t - 0.1 ) = 2( t-2.5 ) -0.7
=>0.1 -1t+ 0.2 = 2t-5-0.7
=>0.1+5.7 = 1t +2t
=> 5.8 = 3t
=> t = \(\frac{5.8}{3}\)
Giải các phương trình:
a) 3x - 2 = 2x - 3; b) 3 - 4u + 24 + 6u = u + 27 + 3u;
c) 5 - (x - 6) = 4(3 - 2x); d) -6(1,5 - 2x) = 3(-15 + 2x);
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = -3 + 2
⇔ x = -1
Vậy phương trình có nghiệm duy nhất x = -1.
b) 3 - 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u - 4u = 27 - 27
⇔ -2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
c) 5 - (x - 6) = 4(3 - 2x)
⇔ 5 - x + 6 = 12 - 8x
⇔ -x + 11 = 12 - 8x
⇔ -x + 8x = 12 - 11
⇔ 7x = 1
⇔ x = 17
Vậy phương trình có nghiệm duy nhất x = 17.
d) -6(1,5 - 2x) = 3(-15 + 2x)
⇔ -9 + 12x = -45 + 6x
⇔ 12x - 6x = -45 + 9
⇔ 6x = -36
⇔ x = -6
Vậy phương trình có nghiệm duy nhất x = -6
giải các phương trình :
a)
\(3x-2=2x-3\)
\(\Leftrightarrow3x-2x=2-3\)
\(\Leftrightarrow x=-1\)
b)
\(3-4u+24+6u=u+27+3u\)
\(\Leftrightarrow-4u+6u-u-3u=-3-24+27\)
\(\Leftrightarrow6u=0\)
\(\Leftrightarrow u=0\)
c)
\(5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6=12-8x\)
\(\Leftrightarrow-x+8x=-5-6+12\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\frac{1}{7}\)
d)
\(-6.\left(1.5-2x\right)=3.\left(-15+2x\right)\)
\(\Leftrightarrow-9+12x=-45+6x\)
\(\Leftrightarrow12x-6x=9-45\)
\(\Leftrightarrow6x=-36\)
\(\Leftrightarrow x=-6\)
Giải các phương trình sau:
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\);
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\);
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\);
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\).
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\)
\(8 - x + 15 = 6 - 4x\)
\( - x + 4x = 6 - 8 - 15\)
\(3x = - 17\)
\(x = \left( { - 17} \right):3\)
\(x = \dfrac{{ - 17}}{3}\)
Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)
\( - 9 + 12u = - 45 + 6u\)
\(12u - 6u = - 45 + 9\)
\(u = \left( { - 36} \right):6\)
\(6u = - 36\)
\(u = - 6\)
Vậy nghiệm của phương trình là \(u = - 6\).
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)
\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)
\({x^2} + 6x + 9 - {x^2} - 4x = 13\)
\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2\)
Vậy nghiệm của phương trình là \(x = 2\).
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)
\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)
\({y^2} - 25 - {y^2} + 4y - 4 = 5\)
\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)
\(4y = 34\)
\(y = 34:4\)
\(y = \dfrac{{17}}{2}\)
Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).
Giải các phương trình:
a) 3x – 2 = 2x – 3
b) 3 – 4u + 24 + 6u = u + 27 + 3u;
c) 5 – (x – 6) = 4(3 – 2x)
d) -6(1,5 – 2x) = 3(-15 + 2x)
e) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7
a,\(3x-2=2x-3\)
\(\Leftrightarrow\)\(3x-2-2x+3=0\)
\(\Leftrightarrow\)\(x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy tập nhgiệm của pt là S= {-1}
b,\(3-4u+24+6u=u+27+3u\)
\(\Leftrightarrow3-4u+24+6u-u-27-3u=0\)
\(\Leftrightarrow-2u=0\)
\(\Leftrightarrow u=0\)
Vậy tập nghiệm của pt là S={0}
c,\(5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6-12+8x=0\)
\(\Leftrightarrow7x-1=0\)
\(\Leftrightarrow x=\frac{1}{7}\)
Vậy tập nghiệm của pt là S={\(\frac{1}{7}\)}
d,\(-6\left(1,5-2x\right)=3\left(-15+2x\right)\)
\(\Leftrightarrow-9+12x+45-6x=0\)
\(\Leftrightarrow6x+36=0\)
\(\Leftrightarrow6\left(x+6\right)=0\)
\(\Leftrightarrow x+6=0\)
\(\Leftrightarrow x=-6\)
Vậu tập nghiệm của pt là S={-6}
e,\(0,1-2\left(0,5t-0,1\right)=2\left(t-2,5\right)-0,7\)
\(\Leftrightarrow0,1-t+0,2-2t+5+0,7=0\)
\(\Leftrightarrow6-3t=0\)
\(\Leftrightarrow3\left(2-t\right)=0\)
\(\Leftrightarrow2-t=0\)
\(\Leftrightarrow t=2\)
Vậy tập nghiệm của pt là S={2}
\(\)
a) 3x – 2 = 2x – 3
<=> 3x – 2x = -3 + 2
<=> x = -1
Vậy phương trình có nghiệm duy nhất là x = -1
b) 3 – 4u + 24 + 6u = u + 27 + 3u
<=> 2u + 27 = 4u + 27
<=> 2u – 4u = 27 – 27
<=> -2u = 0
<=> u = 0
Vậy phương trình có nghiệm duy nhất u = 0
5 – (x – 6) = 4(3 – 2x)
<=> 5 – x + 6 = 12 – 8x
<=> -x + 11 = 12 – 8x
<=> -x + 8x = 12 – 11
<=> 7x = 1
<=> x = 1/7
Vậy phương trình có nghiệm duy nhất x = 1/7
d) -6(1,5 – 2x) = 3(-15 + 2x)
<=> -9 + 12x = -45 + 6x
<=> 12x – 6x = -45 + 9
<=> 6x = -36
<=> x = -6
Vậy phương trình có nghiệm duy nhất x = -6
( Làm vậy đúng chưa mn )
Mn giúp em 2 câu này với ạ
a, (x-1,5)^6+2(1,5-x)^2=0
b, (2x^3 +3x^2+3+2x=0
Bài này dùng phân tích đa thức thành nhân từ nha m.n
a) Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^2=0\)
\(\Leftrightarrow\left(x-1.5\right)^2\left[\left(x-1.5\right)^4+2\right]=0\)
\(\Leftrightarrow x-1.5=0\)
hay x=1,5
b) Ta có: \(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)