Tìm m để bpt: 3x2 - 4x - m + 3 < 0 có nghiệm x < 5
1.Tìm tập nghiệm D của bpt |2x-1|≤x+2.
2.Tìm m để (m+2)x²-3x+2m-3=0 có 2 nghiệm trái dấu.
3.Tìm tập nghiệm của bpt 5x-1>2x/5+3.
4.Tìm tập nghiệm S của bpt (2x+1)² -3(x-3)>4x²+10.
5.Tìm tập nghiệm S của bpt 1<1/1-x.
6.Tìm tập nghiệm S của bpt (x-5)²(x-3)/x+1≤0.
1.
- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)
- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)
Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)
2.
Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)
3.
\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)
4.
\(4x^2+4x+1-3x+9>4x^2+10\)
\(\Leftrightarrow x>0\)
5.
\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)
6.
\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)
Cho phương trình x^2 -4x+m-5=0 tìm các giá trị m để phương trình có 2 nghiệm phân biệt x1,x2 thoã mãn(x1-1).(x2^2-3x2+m-6)=-3
=>(x1-1)[x2^2-x2(x1+x2-1)+x1x2+1]=-3
=>(x1-1)[-x1x2+x2+x1x2+1]=-3
=>(x1-1)(x2+1)=-3
=>x1x2+(x1-x2)-1=-3
=>(x1-x2)=-3+1-x1x2=-2-m+5=-m+3
=>(x1+x2)^2-4x1x2=m^2-6m+9
=>4^2-4(m-5)=m^2-6m+9
=>4m-20=16-m^2+6m-9=-m^2+6m+7
=>4m-20+m^2-6m-7=0
=>m^2-2m-27=0
=>\(m=1\pm2\sqrt{7}\)
Cho phương trình: x²-4x+m-5=0
Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: (x1-1)(x2²-3x2+m-6)=-3
Bài 5: Cho phương trình x2 – 4x + 2m - 3 = 0 a) Tìm điều kiện của m để phương trình có 2 nghiệm x1, X2 phân biệt thoả tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau. b) Tìm m để phương trình có 2 nghiệm X), x2 thoả mãn điều kiện x1 = 3x2
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
1. Tìm m để hệ bpt sau có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x^2+2x+m+1\le0\\x^2-4x-6\left(m+1\right)< 0\end{matrix}\right.\)
2. Giải bpt sau
\(\dfrac{\left|x^2-x\right|-2}{x^2-x-1}\ge0\)
Tìm m để bpt: x2 - (m + 8)x + 3m + 15 ≤ 0 có tập nghiệm chứa [5, 8]
tìm m để BPT : \(mx^2-2\left(m-2\right)x+m-3>0\) có nghiệm
Trường hợp 1: m=0
Bất phương trình trở thành:
\(-2\cdot\left(0-2\right)x+0-3>0\)
=>4x-3>0
hay x>3/4
=>Nhận trường hợp m=0
Trường hợp 2: m<>0
\(\text{Δ}=\left(2m-4\right)^2-4m\left(m-3\right)\)
\(=4m^2-16m+16-4m^2+12m\)
=-4m+16
Để phương trình có nghiệm thì \(\left\{{}\begin{matrix}-4m+16< 0\\m>0\end{matrix}\right.\Leftrightarrow m>4\)
Vậy: m>4
Với \(m=0\) thỏa mãn
Với \(m\ne0\) BPT vô nghiệm khi: \(mx^2-2\left(m-2\right)x+m-3\le0\) nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-2\right)^2-m\left(m-3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-m+4\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m\ge4\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m để BPT đã cho vô nghiệm
\(\Rightarrow\) BPT đã cho có nghiệm với mọi m
Tìm m để bpt sau có tập nghiệm là R: (m-4)x^2 +( 2m-8)x +m -5<0
tìm tất cả các giá trị của tham số m để bpt \(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m\) có nghiệm đúng với mọi x thuộc R
Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)
\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)
\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)
Yêu cầu bài toán thỏa mãn khi:
\(m\le minf\left(t\right)=-2\)