\(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(m-5\right)\)
=16-4(m-5)
=16-4m+20
=-4m+36
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+36>0
=>-4m>-36
=>m<9
Theo Vi-et, ta có: \(\begin{cases}x_1+x_2=-\frac{b}{a}=4\\ x_1x_2=\frac{c}{a}=m-5\end{cases}\)
x2 là nghiệm của phương trình nên ta có:
\(x_2^2-4x_2+m-5=0\)
=>\(x_2^2-3x_2+m-6-x_2+1=0\)
=>\(x_2^2-3x_2+m-6=x_2-1\)
\(\left(x_1-1\right)\left(x_2^2-3x_2+m-6\right)=-3\)
=>\(\left(x_1-1\right)\left(x_2-1\right)=-3\)
=>\(x_1x_2-\left(x_1+x_2\right)+1=-3\)
=>m-5-4+1=-3
=>m-8=-3
=>m=-3+8=5(nhận)