\(x^2-\left(2m+1\right)x+m^2+1=0\)
\(\Delta=b^2-4ac=\left[-\left(2m+1\right)\right]^2-4\left(m^2+1\right)\)
\(=\left(4m^2+4m+1\right)-4m^2-4\)
\(=4m-3\)
Để pt có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow4m-3>0\Leftrightarrow4m>3\Leftrightarrow m>\dfrac{3}{4}\)
Theo Vi ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+1\\x_1x_2=\dfrac{c}{a}=m^2+1\end{matrix}\right.\)
Ta có : \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=13\)
\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=13\)
\(\Leftrightarrow\left(x_1^2+x_1^2\right)+\left(2x_1+2x_2\right)+2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)-11=0\)
\(\Leftrightarrow\left(2m+1\right)^2-2\left(m^2+1\right)+2\left(2m+1\right)-11=0\)
\(\Leftrightarrow4m^2+4m+1-2m^2-2+4m+2-11=0\)
\(\Leftrightarrow2m^2+8m-10=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\left(tm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
Vậy m = 1 thì thỏa mãn đề bài.
∆ = [-(2m + 1)]² - 4.1.(m² + 1)
= 4m² + 4m + 1 - 4m² - 4
= 4m - 3
Phương trình có hai nghiệm phân biệt khi ∆ > 0
⇔ 4m - 3 > 0
⇔ m > 3/4
Theo Viét ta có:
x₁ + x₂ = 2m + 1
x₁x₂ = m² + 1
Ta có:
(x₁ + 1)² + (x₂ + 1)² = 13
⇔ x₁² + 2x₁ + 1 + x₂² + 2x₂ + 1 = 13
⇔ (x₁ + x₂)² - 2x₁x₂ + 2(x₁ + x₂) + 2 = 13
⇔ (2m + 1)² - 2(m² + 1) + 2(2m + 1) + 2 = 13
⇔ 4m² + 4m + 1 - 2m² - 2 + 4m + 2 + 2 - 13 = 0
⇔ 2m² + 8m - 10 = 0
Phương trình có hai nghiệm:
m = 1 (nhận)
m = -5 (loại)
Vậy m = 1 thì phương trình có hai nghiệm thỏa mãn (x₁ + 1)² + (x₂ + 1)² = 13
Δ=(2m+1)^2-4(m^2+1)
=4m^2+4m+1-4m^2-4=4m-3
Để phương trình có hai nghiệm phân biệt thì 4m-3>0
=>m>3/4
(x1+1)^2+(x2+1)^2=13
=>x1^2+x2^2+2(x1+x2)+2=13
=>(x1+x2)^2-2x1x2+2(x1+x2)=11
=>(2m+1)^2-2(m^2+1)+2(2m+1)=11
=>4m^2+4m+1-2m^2-2+4m+2=11
=>4m^2+6m-10=0
=>m=1 hoặc m=-5/2(loại)