Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bullet sivel
Xem chi tiết
Aki Tsuki
4 tháng 8 2018 lúc 6:59

đkxđ: m≠0, n ≠ 0; mn > 0; m ≠ \(\sqrt{mn}\)

\(\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\left(\dfrac{m+n}{\sqrt{mn}}+\dfrac{n}{m-\sqrt{mn}}-\dfrac{m}{n+\sqrt{mn}}\right)\)

\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\left(\dfrac{m+n}{\sqrt{mn}}+\dfrac{n}{\sqrt{m}\left(\sqrt{m}-\sqrt{n}\right)}-\dfrac{m}{\sqrt{n}\left(\sqrt{m}+\sqrt{n}\right)}\right)\)

\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\left[\dfrac{\left(m+n\right)\left(m-n\right)}{\sqrt{mn}\left(m-n\right)}+\dfrac{n\sqrt{n}\left(\sqrt{m}+\sqrt{n}\right)}{\sqrt{mn}\left(m-n\right)}-\dfrac{m\sqrt{m}\left(\sqrt{m}-\sqrt{n}\right)}{\sqrt{mn}\left(m-n\right)}\right]\)

\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\dfrac{m^2-n^2+n\sqrt{mn}+n^2-m^2+m\sqrt{mn}}{\sqrt{mn}\left(m-n\right)}\)

\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\dfrac{n\sqrt{mn}+m\sqrt{mn}}{\sqrt{mn}\left(m-n\right)}\)

\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}\cdot\dfrac{\sqrt{mn}\left(\sqrt{m}-\sqrt{n}\right)\left(\sqrt{m}+\sqrt{n}\right)}{\sqrt{mn}\left(m+n\right)}\)

\(=\sqrt{m}-\sqrt{n}\)

Thịnh Gia Vân
Xem chi tiết
Lý Mẫn
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2022 lúc 11:06

a: \(=ab+2\cdot\sqrt{\dfrac{b}{a}\cdot ab}-\sqrt{ab\cdot\left(\dfrac{a}{b}+\dfrac{1}{\sqrt{ab}}\right)}\)

\(=ab+2b-\sqrt{ab\cdot\dfrac{a\sqrt{a}+\sqrt{b}}{b\sqrt{a}}}\)

\(=ab+2b-\sqrt{\sqrt{a}\cdot\left(a\sqrt{a}+\sqrt{b}\right)}\)

b: \(=\left(\sqrt{\dfrac{a^2m^2\cdot n}{b^2\cdot m}}-\sqrt{mn\cdot\dfrac{a^2b^2}{n^2}}+\sqrt{\dfrac{a^4}{b^4}\cdot\dfrac{m}{n}}\right)\cdot a^2b^2\cdot\sqrt{\dfrac{n}{m}}\)

\(=\left(\dfrac{a\sqrt{mn}}{b}-\sqrt{a^2b^2\cdot\dfrac{m}{n}}+\dfrac{a^2}{b^2}\cdot\sqrt{\dfrac{m}{n}}\right)\cdot\sqrt{\dfrac{n}{m}}\cdot a^2b^2\)

\(=\left(\dfrac{an}{b}-ab+\dfrac{a^2}{b^2}\right)\cdot a^2b^2\)

\(=a^3nb-a^3b^3+a^4\)

Minh Trường
Xem chi tiết
Ngô Thanh Sang
22 tháng 9 2017 lúc 20:35

Điều kiện: \(\left\{{}\begin{matrix}b\ne0,m\ne0,n\ne0\\\dfrac{n}{m}\ge0\\mn\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b\ne0\\m\ne0\\n\ne0\\m,n\end{matrix}\right.\) ( bổ sung chổ m,n nha chỗ đó là m,n cùng dấu )

Khi đó \(A=\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right).a^2.b^2\sqrt{\dfrac{n}{m}}\)

\(=\dfrac{am}{b}\sqrt{\dfrac{n}{m}}.a^2.b^2.\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}.a^2.b^2.\sqrt{\dfrac{n}{m}}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}.a^2.b^2.\sqrt{\dfrac{n}{m}}\)

\(=a^3bm\sqrt{\dfrac{n^2}{m^2}}-\dfrac{a^3b^3}{n}.\sqrt{\dfrac{mn^2}{m}}+a^4.\sqrt{\dfrac{mn}{nm}}\)

\(=a^3bm.\left|\dfrac{n}{m}\right|-\dfrac{a^3b^3}{n}.\sqrt{n^2}+a^4\)

\(=a^3bm.\dfrac{n}{m}-\dfrac{a^3b^3}{n}.\left|n\right|+a^4\) ( vì m,n cùng dấu )

\(=a^3bn-\dfrac{a^3b^3}{n}.\left|n\right|+a^4\)

Nếu n > 0 thì \(A=a^3bn-\dfrac{a^3b^3}{n}.n+a^4=a^3bn-a^3b^3+a^4\)

Nếu n < 0 thì \(A=a^3bn-\dfrac{a^3b^3}{n}.\left(-n\right)+a^4=a^3bn+a^3b^3+a^4\)

Vậy \(A=a^3bn-a^3b^3+a^4\) với n > 0; \(A=a^3bn+a^3b^3+a^4\) với n < 0

Bài này mới cơ bản thôi

Hung nguyen
22 tháng 9 2017 lúc 13:06

Èo. Câu này nhân vô đi bác. Nhân vô rồi rút gọn

Ngô Thanh Sang
22 tháng 9 2017 lúc 20:20

Bài này quá đơn giản

Lê Thị Vân Anh
Xem chi tiết
hang pham
Xem chi tiết
Nguyễn Ngọc Anh Minh
29 tháng 8 2018 lúc 9:45

Nhân tử và mẫu của biểu thức với \(\sqrt{m}+\sqrt{n}-\sqrt{m+n}.\)

\(\Rightarrow\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}+\sqrt{m+n}\right)\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)

\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}\)

\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+n+2\sqrt{mn}-m-n}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)

Nobi Nobita
22 tháng 8 2020 lúc 16:21

Ta có: \(\frac{2\sqrt{mn}}{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{(\sqrt{m}+\sqrt{n}+\sqrt{m+n})\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)

\(=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+2\sqrt{mn}+n-m-n}\)

\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{2\sqrt{mn}}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)( đpcm )

Áp dụng: Với \(m=2\)và \(n=5\)và \(mn=10\)\(m+n=7\)ta có:

\(\frac{2\sqrt{10}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=\sqrt{2}+\sqrt{5}-\sqrt{2+5}=\sqrt{2}+\sqrt{5}-\sqrt{7}\)

Khách vãng lai đã xóa
Lê Thị Vân Anh
Xem chi tiết
Lê Thị Vân Anh
Xem chi tiết
Hoàng
Xem chi tiết