Bài 3: Liên hệ giữa phép nhân và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lý Mẫn

Thực hiện phép tính:

a) \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right)\cdot\sqrt{ab}\)

b) \(\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right)\cdot a^2b^2\cdot\sqrt{\dfrac{n}{m}}\)

Nguyễn Lê Phước Thịnh
10 tháng 7 2022 lúc 11:06

a: \(=ab+2\cdot\sqrt{\dfrac{b}{a}\cdot ab}-\sqrt{ab\cdot\left(\dfrac{a}{b}+\dfrac{1}{\sqrt{ab}}\right)}\)

\(=ab+2b-\sqrt{ab\cdot\dfrac{a\sqrt{a}+\sqrt{b}}{b\sqrt{a}}}\)

\(=ab+2b-\sqrt{\sqrt{a}\cdot\left(a\sqrt{a}+\sqrt{b}\right)}\)

b: \(=\left(\sqrt{\dfrac{a^2m^2\cdot n}{b^2\cdot m}}-\sqrt{mn\cdot\dfrac{a^2b^2}{n^2}}+\sqrt{\dfrac{a^4}{b^4}\cdot\dfrac{m}{n}}\right)\cdot a^2b^2\cdot\sqrt{\dfrac{n}{m}}\)

\(=\left(\dfrac{a\sqrt{mn}}{b}-\sqrt{a^2b^2\cdot\dfrac{m}{n}}+\dfrac{a^2}{b^2}\cdot\sqrt{\dfrac{m}{n}}\right)\cdot\sqrt{\dfrac{n}{m}}\cdot a^2b^2\)

\(=\left(\dfrac{an}{b}-ab+\dfrac{a^2}{b^2}\right)\cdot a^2b^2\)

\(=a^3nb-a^3b^3+a^4\)


Các câu hỏi tương tự
Thịnh Gia Vân
Xem chi tiết
guard
Xem chi tiết
Bùi Thị Ngọc Anh
Xem chi tiết
An Nhi
Xem chi tiết
Luu Pin
Xem chi tiết
Lý Mẫn
Xem chi tiết
Trai Vô Đối
Xem chi tiết
lu nguyễn
Xem chi tiết
lu nguyễn
Xem chi tiết