a,\(\dfrac{5}{7}\) x Y = \(\dfrac{3}{5}\)
b,\(\dfrac{1}{8}\) : y = \(\dfrac{3}{20}\)
Bài 3: (Đề 2) Tìm y
a) \(2\dfrac{2}{5}:\) y x \(1\dfrac{3}{4}=\dfrac{7}{8}\) b)\(3\dfrac{2}{5}:y:1\dfrac{1}{4}=2\dfrac{3}{5}\) c) \(\dfrac{12}{5}-2\dfrac{2}{5}x\) y \(=1\dfrac{1}{4}\)
\(a,2\dfrac{2}{5}:y\times1\dfrac{3}{4}=\dfrac{7}{8}\\ \dfrac{12}{5}:y\times\dfrac{7}{4}=\dfrac{7}{8}\\ \dfrac{12}{5}:y=\dfrac{7}{8}:\dfrac{7}{4}\\ \dfrac{12}{5}:y=\dfrac{1}{2}\\ y=\dfrac{12}{5}:\dfrac{1}{2}=\dfrac{24}{5}\\ b,3\dfrac{2}{5}:y:1\dfrac{1}{4}=2\dfrac{3}{5}\\ \dfrac{17}{5}:y:\dfrac{5}{4}=\dfrac{13}{5}\\ y:\dfrac{5}{4}=\dfrac{17}{5}:\dfrac{13}{5}\\ y:\dfrac{5}{4}=\dfrac{17}{13}\\ y=\dfrac{17}{13}\times\dfrac{5}{4}=\dfrac{85}{52}\)
\(c,\dfrac{12}{5}-2\dfrac{2}{5}\times y=1\dfrac{1}{4}\\ \dfrac{12}{5}-\dfrac{12}{5}\times y=\dfrac{5}{4}\\ \dfrac{12}{5}\times y=\dfrac{12}{5}-\dfrac{5}{4}\\ \dfrac{12}{5}\times y=\dfrac{23}{20}\\ y=\dfrac{23}{20}:\dfrac{12}{5}\\ y=\dfrac{23}{48}\)
a, 2\(\dfrac{2}{5}\): y \(\times\)1\(\dfrac{3}{4}\) = \(\dfrac{7}{8}\)
\(\dfrac{12}{5}\) : y \(\times\dfrac{7}{4}\) = \(\dfrac{7}{8}\)
\(\dfrac{12}{5}\) : y = \(\dfrac{7}{8}\) : \(\dfrac{7}{4}\)
\(\dfrac{12}{5}\) : y = \(\dfrac{1}{2}\)
y = \(\dfrac{12}{5}\) : \(\dfrac{1}{2}\)
y = \(\dfrac{24}{5}\)
b, 3\(\dfrac{2}{5}\): y : 1\(\dfrac{1}{4}\) = 2\(\dfrac{3}{5}\)
\(\dfrac{17}{5}\): y: \(\dfrac{5}{4}\) = \(\dfrac{13}{5}\)
\(\dfrac{17}{5}\):y = \(\dfrac{13}{5}\times\dfrac{5}{4}\)
\(\dfrac{17}{5}\) : y = \(\dfrac{13}{4}\)
y = \(\dfrac{17}{5}\) : \(\dfrac{13}{4}\)
y = \(\dfrac{68}{65}\)
c, \(\dfrac{12}{5}\) - 2\(\dfrac{2}{5}\)\(\times y\) = 1\(\dfrac{1}{4}\)
\(\dfrac{12}{5}\) - \(\dfrac{12}{5}\)\(\times\)y = \(\dfrac{5}{4}\)
\(\dfrac{12}{5}\times y\) = \(\dfrac{12}{5}\) - \(\dfrac{5}{4}\)
\(\dfrac{12}{5}\) \(\times\) y = \(\dfrac{23}{20}\)
\(y\) = \(\dfrac{23}{20}\): \(\dfrac{12}{5}\)
y = \(\dfrac{23}{48}\)
Bài 2 Tìm y
a) \(\dfrac{1}{2}-2xy=\dfrac{9}{20}\) b)\(\dfrac{3}{5}:\dfrac{4}{3}:y=2+\dfrac{7}{10}\) c) y + y x\(\dfrac{3}{2}-y\) x \(\dfrac{1}{2}=\dfrac{1}{10}\)
1/2-2y=9/20
=>2y=1/2-9/20=1/20
=>y=1/20:2=1/40
b,3/5:4/3:y=2+7/10=9/20:y=27/10
=>y=9/20:27/10=1/6
c,y+y*3/2-y*1/2=1/10
=>y(1+3/2-1/2)=1/10
=>2y=1/10
=>y=1/10:2=1/20
Tìm các số nguyên x,y biết:
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
b) \(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
d) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
f) \(y\dfrac{5}{y}=\dfrac{86}{y}\) ( \(x\dfrac{2}{5};y\dfrac{5}{y}\) là các hỗn số)
a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
⇒\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)
⇒\(2x+1=21\)
\(2x=21-1\)
\(2x=20\)
⇒\(x=10\)
Tìm x, biết:
a) \(\dfrac{1}{20}\) - (x - \(\dfrac{8}{5}\)) = \(\dfrac{1}{10}\)
b) \(\dfrac{7}{4}\) - (x + \(\dfrac{5}{3}\)) = \(\dfrac{-12}{5}\)
c) x - [\(\dfrac{17}{2}\) - \(\left(\dfrac{-3}{7}+\dfrac{5}{3}\right)\)] = \(\dfrac{-1}{3}\)
a) 1/20 - (x - 8/5) = 1/10
x - 8/5 = 1/20 - 1/10
x - 8/5 = -1/20
x = -1/20 + 8/5
x = 31/20
b) 7/4 - (x + 5/3) = -12/5
x + 5/3 = 7/4 + 12/5
x + 5/3 = 83/20
x = 83/20 - 5/3
x = 149/60
c) x - [17/2 - (-3/7 + 5/3)] = -1/3
x - (17/2 - 26/21) = -1/3
x - 305/42 = -1/3
x = -1/3 + 305/42
x = 97/14
Giải các phương trình:
a) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
b) \(\dfrac{8-x}{x-7}\) - 8 = \(\dfrac{1}{x-7}\)
c) \(\dfrac{1}{x-1}\) + \(\dfrac{2x}{x^2+x+1}\) = \(\dfrac{3x^2}{x^3-1}\)
d) \(\dfrac{y+5}{y^2-5y}\) - \(\dfrac{y-5}{2y^2+10y}\) = \(\dfrac{y+25}{2y^2-50}\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
Câu 1 : Biết\(\dfrac{x}{t}=\dfrac{5}{6};\dfrac{y}{z}=\dfrac{1}{5};\dfrac{z}{x}=\dfrac{7}{3}\) ( x; y; z; t khác 0 ). Hãy tìm tỉ số \(\dfrac{t}{y}\)
A. \(\dfrac{t}{y}=\dfrac{14}{25}\) B. \(\dfrac{t}{y}=\dfrac{7}{8}\) C. \(\dfrac{t}{y}=\dfrac{18}{7}\) D. \(\dfrac{t}{y}=\dfrac{6}{7}\)
bài 1 : Tìm y
\(\dfrac{7}{8}xy-\dfrac{6}{4}=\dfrac{3}{2}\) \(\dfrac{2}{5}:y+\dfrac{1}{5}:y=\dfrac{10}{3}\)
bài 2 : Tính nhanh
\(\dfrac{2}{5}x\dfrac{4}{7}+\dfrac{2}{5}x\dfrac{3}{7}\) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)
Bài 1:
+) \(\dfrac{7}{8}\times y=\dfrac{3}{2}+\dfrac{6}{4}=3\)
\(y=3:\dfrac{7}{8}=\dfrac{24}{7}\)
+) \(\dfrac{1}{y}\times\left(\dfrac{2}{5}+\dfrac{1}{5}\right)=\dfrac{10}{3}\)
\(\dfrac{1}{y}=\dfrac{10}{3}:\dfrac{3}{5}=\dfrac{50}{9}\)
\(y=\dfrac{9}{50}\)
Bài 2:
+) \(=\dfrac{2}{5}\times\left(\dfrac{4}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{7}{7}=\dfrac{2}{5}\)
+) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)
\(\dfrac{2}{9}\times\dfrac{3}{2}\times\dfrac{9}{3}=1\)
Tìm x, biết:
a) \(\dfrac{-1}{10}\) + \(\dfrac{2}{5}\)x + \(\dfrac{7}{20}\) = \(\dfrac{1}{10}\)
b) \(\dfrac{1}{3}\) + \(\dfrac{1}{2}\) : x= \(-\dfrac{1}{5}\)
c) \(-\dfrac{2}{3}\) : x + \(\dfrac{5}{8}\) = \(-\dfrac{7}{12}\)
a, - \(\dfrac{1}{10}\) + \(\dfrac{2}{5}\)\(x\) + \(\dfrac{7}{20}\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{5}\)\(x\) = \(\dfrac{1}{10}\) - \(\dfrac{7}{20}\) + \(\dfrac{1}{10}\)
\(\dfrac{2}{5}\) \(x\) = - \(\dfrac{3}{20}\)
\(x\) = - \(\dfrac{3}{20}\): \(\dfrac{2}{5}\)
\(x\) = - \(\dfrac{3}{8}\)
b, \(\dfrac{1}{3}\) + \(\dfrac{1}{2}\): \(x\) = - \(\dfrac{1}{5}\)
\(\dfrac{1}{2}\): \(x\) = - \(\dfrac{1}{5}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{2}\): \(x\) = - \(\dfrac{8}{15}\)
\(x\) = \(\dfrac{1}{2}\): (- \(\dfrac{8}{15}\))
\(x\) = - \(\dfrac{15}{16}\)
c, - \(\dfrac{2}{3}\): \(x\) + \(\dfrac{5}{8}\) = - \(\dfrac{7}{12}\)
\(\dfrac{2}{3}\): \(x\) = \(\dfrac{7}{12}\) + \(\dfrac{5}{8}\)
\(\dfrac{2}{3}\) : \(x\) = \(\dfrac{29}{24}\)
\(x\) = \(\dfrac{2}{3}\) : \(\dfrac{29}{24}\)
\(x\) = \(\dfrac{16}{29}\)
Bài 1:
\(a,\dfrac{x}{3}=\dfrac{y}{7}\) và \(x+y=20\)
\(b,\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=6\)
\(c,\dfrac{x}{7}=\dfrac{18}{14}\)
\(d,6:x=1\dfrac{3}{4}:5\)
\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}\) và \(x-y+z=8\)
Bài 1:
\(a,\dfrac{x}{3}=\dfrac{y}{7}\) và \(x+y=20\)
\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.7=14\)
Vậy \(x=6\) và \(y=14\)
\(b,\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=6\)
\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
\(\Rightarrow x=2.5=10\)
\(y=2.2=4\)
Vậy \(x=10\) và \(y=4\)
\(c,\dfrac{x}{7}=\dfrac{18}{14}\)
Từ tỉ lệ thức trên ta có:
\(14x=7.18\)
\(x=\dfrac{7.18}{14}\)
\(x=9\)
Vậy \(x=9\)
\(d,6:x=1\dfrac{3}{4}:5\)
\(6:x=\dfrac{7}{20}\)
\(x=6:\dfrac{7}{20}\)
\(x=\dfrac{120}{7}\)
Vậy \(x=\dfrac{120}{7}\)
\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(x-y+z=8\)
\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Rightarrow x=2.2=4\)
\(y=2.4=8\)
\(z=2.6=12\)
Vậy \(x=4;y=8;z=12\)
a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)
Từ đó suy ra x=1,5; y=3,5
b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)
Từ đó suy ra x=2,5; y=1
c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)
d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)
e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)
Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
+) \(\dfrac{x}{3}=2\Rightarrow x=6\)
+) \(\dfrac{y}{7}=2\Rightarrow y=14\)
Vậy ...
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
+) \(\dfrac{x}{5}=2\Rightarrow x=10\)
+) \(\dfrac{y}{2}=2\Rightarrow y=4\)
Vậy ...
c,\(\dfrac{x}{7}=\dfrac{18}{14}\)
\(\Leftrightarrow14x=18.7\)
\(\Rightarrow14x=126\)
\(\Rightarrow x=126:14=9\)
Vậy ...
d, \(6:x=1\dfrac{3}{4}:5\)
\(\Leftrightarrow6:x=\dfrac{7}{4}:5\)
\(\Rightarrow\dfrac{7}{4}x=6.5\)
\(\Rightarrow\dfrac{7}{4}x=30\)
\(\Rightarrow x=30.\dfrac{4}{7}=\dfrac{120}{7}\)
Vậy ...
e, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{8}{6}\)
+) \(\dfrac{x}{2}=\dfrac{8}{6}\Rightarrow x=\dfrac{8}{3}\)
+) \(\dfrac{y}{4}=\dfrac{8}{6}\Rightarrow y=\dfrac{16}{3}\)
+) \(\dfrac{z}{8}=\dfrac{8}{6}\Rightarrow z=\dfrac{32}{3}\)
Vậy ...