Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quân
Xem chi tiết
shanyuan
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 12 2021 lúc 8:15

\(a,ĐK:x\ge0;x\ne9\\ A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\\ b,x=13-4\sqrt{3}=\left(2\sqrt{3}-1\right)^2\\ \Leftrightarrow A=\dfrac{-3}{2\sqrt{3}-1+3}=\dfrac{-3}{2\sqrt{3}+2}=\dfrac{-3\left(2\sqrt{3}-2\right)}{8}\)

\(c,A< -\dfrac{1}{2}\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\Leftrightarrow\dfrac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}< 0\\ \Leftrightarrow\sqrt{x}-3< 0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\\ d,A=-\dfrac{2}{3}\Leftrightarrow\dfrac{3}{\sqrt{x}+3}=\dfrac{2}{3}\\ \Leftrightarrow2\sqrt{x}+6=9\\ \Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\left(tm\right)\\ e,\Leftrightarrow\sqrt{x}+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}=0\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x=0\left(tm\right)\\ f,\sqrt{x}+3\ge3\\ \Leftrightarrow A=-\dfrac{3}{\sqrt{x}+3}\ge-\dfrac{3}{3}=-1\\ A_{min}=-1\Leftrightarrow x=0\)

Nhất Tiêu Bác Quân
Xem chi tiết
ahihiii Thuongcutequa
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 11 2021 lúc 21:51

a: \(A=\dfrac{x+2\sqrt{x}+x-3\sqrt{x}+2-x-\sqrt{x}-2}{x-4}\)

\(=\dfrac{x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

Han Gia
Xem chi tiết
Akai Haruma
9 tháng 7 2023 lúc 19:27

Lời giải:
1. 

$M=(x^2+6x+9)+(x^2-9)-2(x^2-2x-8)$

$=x^2+6x+9+x^2-9-2x^2+4x+16=(x^2+x^2-2x^2)+(6x+4x)+(9-9+16)$
$=10x+16=5(2x+1)+11=5.0+11=11$

2.

$V=(9x^2+24x+16)-(x^2-16)-10x=9x^2+24x+16-x^2+16-10x$

$=(9x^2-x^2)+(24x-10x)+(16+16)=8x^2+14x+32$

$=8(\frac{-1}{10})^2+14.\frac{-1}{10}+32=\frac{767}{25}$

3.

$P=(x^2+2x+1)-(4x^2-4x+1)+3(x^2-4)$

$=x^2+2x+1-4x^2+4x-1+3x^2-12$
$=(x^2-4x^2+3x^2)+(2x+4x)+(1-1-12)$

$=6x-12=6.1-12=-6$

4.

$Q=(x^2-9)+(x^2-4x+4)-2x^2+8x$

$=x^2-9+x^2-4x+4-2x^2+8x$
$=(x^2+x^2-2x^2)+(-4x+8x)-9+4$

$=4x-5=4(-1)-5=-9$

Trung123
Xem chi tiết
HaNa
24 tháng 8 2023 lúc 8:00

ĐK: \(x\ne\pm3\)

Khi đó:

\(C=\dfrac{2\left(x-3\right)}{x^2-9}+\dfrac{1\left(x+3\right)}{x^2-9}-\dfrac{8}{x^2-9}\\ =\dfrac{2x-6}{x^2-9}+\dfrac{x+3}{x^2-9}-\dfrac{8}{x^2-9}\\ =\dfrac{2x-6+x+3-8}{x^2-9}\\ =\dfrac{3x-11}{x^2-9}\)

Thế x = 4 vào C được:

\(C=\dfrac{3.4-11}{4^2-9}=\dfrac{12-11}{16-9}=\dfrac{1}{7}\)

HT.Phong (9A5)
24 tháng 8 2023 lúc 8:08
hjxbwbskewndkndk
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 20:04

a: \(P=\left(\dfrac{3}{2\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2x^2+3}{\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{4\left(x-2\right)}{2x-1}\)

\(=\left(\dfrac{3\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}-\dfrac{2x\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\dfrac{4x^2+6}{2\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{4\left(x-2\right)}{2x-1}\)

\(=\dfrac{3x-6-2x^2-4x+4x^2+6}{2\left(x+2\right)\left(x-2\right)}\cdot\dfrac{4\left(x-2\right)}{2x-1}\)

\(=\dfrac{2x^2-x}{x+2}\cdot\dfrac{2}{2x-1}=\dfrac{2x}{x+2}\)

b: Khi 4x2-1=0 thì (2x-1)(2x+1)=0

=>x=1/2(loại) và x=-1/2(nhận)

Khi x=-1/2 thì \(P=\left(2\cdot\dfrac{-1}{2}\right):\left(-\dfrac{1}{2}+2\right)=-1:\dfrac{3}{2}=-\dfrac{2}{3}\)

hjxbwbskewndkndk
Xem chi tiết
2611
16 tháng 5 2022 lúc 19:59

Với `x \ne +-2,x \ne 1/2,x \ne0`. Ta có:

`(3/[2x+4]+x/[2-x]+[2x^2+3]/[x^2-4]):[2x-1]/[4x-8]`

`=(3/[2(x+2)]-x/[x-2]+[2x^2+3]/[(x-2)(x+2)]).[4(x-2)]/[2x-1]`

`=[3(x-2)-2x(x+2)+2(2x^2+3)]/[x(x-2)(x+2)].[4(x-2)]/[2x-1]`

`=[3x-6-2x^2-4x+4x^2+6]/[x(x+2)]. 4/[2x-1]`

`=[2x^2-x]/[x(x+2)]. 4/[2x-1]`

`=[x(2x-1)]/[x(x+2)] . 4/[2x-1]`

`=4/[x+2]`

LKT [VINE] _
Xem chi tiết
LKT [VINE] _
31 tháng 10 2021 lúc 12:57

mình cần gấp giúp mình với

Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 13:53

a:TXĐ D=R\{2}

b: \(P=\dfrac{x^2}{x^3-8}+\dfrac{x}{x^2+2x+4}+\dfrac{1}{x-2}\)

\(=\dfrac{2x^2-2x+x^2+2x+4}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\dfrac{3x^2+4}{x^3-8}\)