Tìm đa thức M(x)=x2+8x-9
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
Tìm nghiệm của các đa thức a)f(x)=4x+12;b)g(x)=2^x2-8x
f(x) = 4x + 12
=> 4x + 12 = 0
=> 4x = -12
=> x = -3
Vậy đa thức f(x) = 4x + 12 có nghiệm là -3
Câu b cậu viết lai đề được không ?
a) Chứng minh đa thức x2 + x + 1 không có nghiệm.
b) Cho các số không âm x,y,z thỏa mãn 8x+3y = 29 và 9x + 1008z = 9 .Tìm giá trị lớn nhất của biểu thức A = 26x + 3y + 2015z.
Bài 1: Tìm nghiệm của các đa thức sau:
a) x + 7; b) x – 4; c) –8x + 20; d) x2 – 100;
e) 4x2 – 81; f) x2 – 7; g) x2 – 9x; h) x3 + 3x.
Tìm đa thức M biết:
a) 2 x 3 + 9 x 2 + 15x + 9 = M.(2x + 3);
b) (2 x 2 - 2x +1 ).M = 6 x 4 - 4 x 3 + x 2 + x.
Bài 4. a) Chứng minh đa thức x2 + x + 1 không có nghiệm.
b) Cho các số không âm x,y,z thỏa mãn 8x+3y = 29 và 9x + 1008z = 9 .Tìm gia trị lớn nhất của biểu thức A = 26x + 3y + 2015z.
\(a,x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(\forall x\right)=>pt\) vô nghiệm
\(b,A=26x+3y+2015z=17x+9x+3y+1008z+1007z\)
\(=8x+9x+3y+1008z+9x+1007z\)
\(=29+9+9x+1008z-z\)
\(=38+9-z=47-z\)\(\le47\)
dấu'=' xảy ra\(< =>z=0\)
\(=>Max\left(A\right)=47< =>z=0\left(x,y,z\ge0\right)\)
3. Tìm nghiệm của các đa thức sau:
a) x + 7; b) \(\dfrac{1}{2}\)x - 4; c) - 8x + 20; d) x2 -100;
e) 4x2 -81; f) x2 - 7; g) x2 - 9x; h) x3 + 3x.
b: 1/2x-4=0
=>1/2x=4
hay x=8
a: x+7=0
=>x=-7
e: 4x2-81=0
=>(2x-9)(2x+9)=0
=>x=9/2 hoặc x=-9/2
g: x2-9x=0
=>x(x-9)=0
=>x=0 hoặc x=9
a)\(x+7=0=>x=-7\)
b)\(\dfrac{1}{2}x-4=0=>\dfrac{1}{2}x=4=>x=8\)
c)\(-8x+20=0=>-8x=-20=>x=\dfrac{5}{2}\)
d)\(x^2-100=0=>x^2=100=>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)
e)\(4x^2-81=0=>4x^2=81=>x^2=\dfrac{81}{4}=>\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{9}{2}\end{matrix}\right.\)
f)\(x^2-7=0=>x^2=7=>x=\sqrt{7}\)
g)\(x^2-9x=0=>x\left(x-9\right)=0=>\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
3. Tìm nghiệm của các đa thức sau:
a) x + 7; b) \(\dfrac{1}{2}\)x - 4; c) - 8x + 20; d) x2 -100;
e) 4x2 -81; f) x2 - 7; g) x2 - 9x; h) x3 + 3x.
a: x+7=0
nên x=-7
b: x-4=0
nên x=4
c: -8x+20=0
=>-8x=-20
hay x=5/2
d: x2-100=0
=>(x-10)(x+10)=0
=>x=10 hoặc x=-10
a) x +7 =0
=>x = -7
b) x - 4 =0=>x = 4
c) -8x + 20 = 0 =>-8x =-20 =>\(x=-\dfrac{20}{-8}=\dfrac{5}{2}\)
d)\(x^2-100=0=>x^2=100>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)
e)\(4x^2-81=0=>4x^2=81=>x^2=\dfrac{81}{4}=>\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{9}{2}\end{matrix}\right.\)
f)\(x^2-7=0=>x^2=7=>x=\sqrt{7}\)
g)\(x^2-9x=0=>x\left(x-9\right)=0=>\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
H)\(x^3+3x=0=>x\left(x^2 +3\right)=0=>\left[{}\begin{matrix}x=0\\x^2=-3\left(vl\right)\end{matrix}\right.\)
8x ( x^2 - 9 ) = 0 tìm x phân tích đa thức thành nhân tử
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
\(8x\left(x^2-9\right)=0\Rightarrow8x\left(x-3\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)