\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)
Help me, các chế ơi
Tính:A=\(\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}\dfrac{3.5}{4^2}.\dfrac{4.6}{5^2}...\dfrac{2016.2018}{2017^2}\)
Chứng tỏ :
a, A = \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2022.2024}\) < \(\dfrac{1}{4}\)
b, B =\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}< \dfrac{1}{2}\)
c, C =\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{4}\)
d, D =\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2014^2}< \dfrac{1}{2}\)
a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)
b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)
Tính giá trị các biểu thức :
\(A=\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\) \(B=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)
a) A = \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)
A = \(\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}.\dfrac{4.4}{4.5}\)
A = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)= \(\dfrac{1}{5}\)
b) B = \(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)
B = \(\dfrac{2.3.4.5}{1.2.3.4}.\dfrac{2.3.4.5}{3.4.5.6}\)= \(\dfrac{5}{3}\)
Cho \(B=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+...............+\dfrac{99^2}{98.100}\) Tìm phần nguyên của B
Help me!!!
\(B=\dfrac{2^2}{1\cdot3}+\dfrac{3^2}{2\cdot4}+\dfrac{4^2}{3\cdot5}+...+\dfrac{99^2}{98\cdot100}\\ =\dfrac{1\cdot3+1}{1\cdot3}+\dfrac{2\cdot4+1}{2\cdot4}+\dfrac{3\cdot5+1}{3\cdot5}+...+\dfrac{98\cdot100+1}{98\cdot100}\\ =\dfrac{1\cdot3}{1\cdot3}+\dfrac{1}{1\cdot3}+\dfrac{2\cdot4}{2\cdot4}+\dfrac{1}{2\cdot4}+\dfrac{3\cdot5}{3\cdot5}+\dfrac{1}{3\cdot5}+...+\dfrac{98\cdot100}{98\cdot100}+\dfrac{1}{98\cdot100}\\ =1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{2\cdot4}+1+\dfrac{1}{3\cdot5}+...+1+\dfrac{1}{98\cdot100}\\ =\left(1+1+1+...+1\right)+\left(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\right)\\ =98+\left(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\right)\\ \)Gọi \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\) là A
\(A=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\\ =\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{98\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{295}{198}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\dfrac{14651}{9900}=\dfrac{14651}{19800}\)
\(B=98+A=98+\dfrac{14651}{19800}=98\dfrac{14651}{19800}\)
Dễ thấy phần nguyên của B là 98
Vậy phần nguyên của B là 98
1.tính giá trị biểu thức
a) \(\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)
b) \(\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right).\left(1+\dfrac{1}{3.5}\right).\left(1+\dfrac{1}{9.11}\right)\)
2. Chứng tỏ:
\(\dfrac{1}{201}+\dfrac{1}{202}+.........+\dfrac{1}{399}+\dfrac{1}{400}\)>\(\dfrac{1}{2}\)
\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)
\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)
\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)
\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)
\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)
\(B=\dfrac{4.9.16.100}{3.8.15.99}\)
\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)
\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)
\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)
\(\dfrac{2^2}{1.3}\)x\(\dfrac{3^2}{2.4}\)x\(\dfrac{4^2}{3.5}\)......\(\dfrac{99^2}{98.100}\)
\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{99^2}{98.100}\)
\(=\dfrac{2.2.3.3.4.4.....99.99}{1.3.2.4.3.5.....98.100}\)
\(=\dfrac{2.3.4.....99}{1.2.3.4.....98}.\dfrac{2.3.4.....99}{3.4.5.....100}\)
\(=\dfrac{99}{98}\cdot\dfrac{2}{100}\)
\(=\dfrac{99}{4900}\)
Thực hiện phép tính
a) A= \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)\)\(+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)
b) B=\(\dfrac{1-3}{1.3}+\dfrac{2-4}{2.4}+\dfrac{3-5}{3.5}+\dfrac{4-6}{4.6}+...+\dfrac{2011-2013}{2011.2013}+\dfrac{2012-2014}{2012.2014}-\dfrac{2013+2014}{2013.2014}\)
\(\dfrac{2^2}{1.3}.\dfrac{3^3}{2.4}.\dfrac{4^4}{3.5}...\dfrac{50^2}{49.54}\)
với lại lũy thừa tất cả phải là mũ 2
\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{50^2}{49.51}\\ =\dfrac{\left(2.3.4.....50\right).\left(2.3.4....50\right)}{\left(1.2.3....49\right).\left(3.4.5.....51\right)}\\ =\dfrac{50.2}{51.1}\\ =1\dfrac{49}{51}\\ =\dfrac{100}{51}\)
CHỨNG MINH
\(\dfrac{1.3+2}{2^{2^{ }}}\)+\(\dfrac{2.4+2}{3^2}\)+\(\dfrac{3.5+2}{4^2}\)+...+\(\dfrac{2008.2010+2}{2009^2}\)+\(\dfrac{2009.2011+2}{2010^2}\) < 2011
GIÚP TỚ ĐI MÀ :))
Trước hết ta chứng minh (a-1)(a+1) + 1 = a^2 (*)
Thật vậy VT = (a-1)(a+1)+1=(a-1)a + a-1 +1 = a^2-a+a=a^2 =VP
Áp dụng (*) ta có:
\(A=\dfrac{1\cdot3+2}{2^2}+\dfrac{2\cdot4+2}{3^2}+...+\dfrac{2009\cdot2011+2}{2010^2}\\ =\dfrac{2^2+1}{2^2}+\dfrac{3^2+1}{3^2}+...+\dfrac{2010^2+1}{2010^2}=2009+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2010^2}\\ < 2009+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2009\cdot2010}\\ =2009+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2009}-\dfrac{1}{2010}=2010-\dfrac{1}{2010}< 2020< 2011\)