hãy chứng minh đa thức sau là vô nghiệm x2+5x+9
sử đề : phải là U(x) nhé
giả sử đa thức trên có nghiệm khi \(U\left(x\right)=-5x^4=0\)
\(\Leftrightarrow x^4=0\Leftrightarrow x=0\)Vậy x = 0 là nghiệm của đa thức trên
hay giả sử là đúng, ko xảy ra điều phải chứng minh ( đa thức trên vô nghiệm )
Chứng minh đa thức sau vô nghiệm: x^2-5x+30
\(x^2-5x+30=x^2-2.\dfrac{5}{2}.x+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2+30=\left(x-\dfrac{5}{2}\right)^2+\dfrac{95}{4}\ge\dfrac{95}{4}>0\) => Đa thức vô nghiệm \(\forall x\)
Chứng minh đa thức sau vô nghiệm
X2+5x+4
Ta có :x2+5x+4=0
=>x2+x+4x+4=0
=>x(x+1)+4(x+1)=0
=>(x+1)(x+4)=0
=>\(\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Chứng minh đa thức x2+x+1 vô nghiệm
f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)
=>f(x)≥\(\dfrac{3}{4}\)
=>đa thức trên vô nghiệm
Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:
Xét x≥0 thì x+1>0
x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0 (1)
Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0 (2)
Xét x≤-1 thì x<0 và x+1≤0. Do đó
x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0 (3)
Từ (1), (2), (3)=> đa thức f(x) vô nghiệm
`***`:Cách khác bạn dưới
`x^2+x+1=0`
`Delta=b^2-4ac`
`=1-4=-4<0`
`=>` pt vô no
Chứng minh đa thức sau vô nghiệm f(x)=5x2 +9
\(5x^2+9>=9>0\forall x\)
nên f(x) vô nghiệm
Cho `f(x)=0`
`=>5x^2+9=0`
`=>5x^2=-9` (Vô lí vì `5x^2 >= 0` mà `-9 < 0`)
Vậy đa thức `f(x)` vô nghiệm
tâ có 5x2≥0∀x
mà 9 > 0
=>5x2 +9>0
hay đa thức sau vô nghiệm
Chứng minh đa thức M=x2+8x+17 vô nghiệm
\(M=x^2+8x+16+1=\left(x+4\right)^2+1>0\)
Do đó: M vô nghiệm
Bài 1: Tìm đa thức M biết : M-3xyz+5x2-7xy+9=6x2+xyz+2xy+3-y2
Bài 2: Chứng minh đa thức sau vô nghiệm :
a)ax2+2x+3 b)x2+4x+6
Bài 3: Cho đa thức P(x)= ax4+bx3+cx2+dx+e, biết P(1)=P(-1) , P(2)=P(-2).
Chứng minh P(x)=P(-x) với mọi x
( giúp mình nha cảm ơn mọi người aa<3 )
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
Cho các đa thức:
F(x)=4x4-2+2x3+2x4-5x+4x3-9
G(x)=6x4+6x3-x2-5x-27
a) Thu gọn và sắp xếp các hạng tử F(x) theo lũy thừa giảm của biến
b) Tính K(x)=F(x) + G(x)
c) Gọi H(x)=F(x) - G(x). Chứng minh đa thức H(x) vô nghiệm
`a,`
`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`
`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`
`F(x)=6x^4+6x^3-5x-11`
`b,`
`K(x)=F(x)+G(x)`
`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`
`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`
`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`
`K(x)=12x^4+12x^3-x^2-10x-38`
`c,`
`H(x)=F(x)-G(x)`
`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`
`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`
`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`
`H(x)=x^2+16`
Đặt `x^2+16=0`
Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)
`->` Đa thức `H(x)` vô nghiệm.
Cho 2 đa thức:
A(x)=x3(x+2)-5x+9+2x3(x-1) và B(x)=2(x2-3x+1)-(3x4+2x2-3x+4)
a) Thu gọn rồi sắp xếp theo lũy thừa tăng dần
b)Tính A(x) + B(x) và A(x) - B(x)
c) Tìm nghiệm của C(x)=A(x)+B(x)
d)Chứng tỏ đa thức H(x)=A(x)+5x vô nghiệm
Giúp em với ạ em đg cần gấp
a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9
⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2
b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7
A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1
c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0
d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0
⇒ H(x) vô nghiệm