X x2+X x 7 + X = 420
tìm y
y x 8 +y x2 = 420
109 x y -9 x y = 2300
y x ( 8 + 2 ) = 420
y x 10 = 420
y = 420 : 10
y = 42
y x ( 109 - 9 ) = 2300
y x 100 = 2300
y = 23
y x 8 +y x2 = 420
yx(8+2)=420
y =420/(8+2)
y =420/10
y = 42
109 x y -9 x y = 2300
y x(109-9) =2300
y =2300/(109-9)
y =2300/100
y =23
> < ?
13 x 5 ? 31 x 5
240 x 3 ? 420 x 3
502 x 6 ? 500 x 6
7 x 620 ? 602 x 7
*) 13 × 5 … 31 × 5
Hai phép tính trên có thừa số 5 giống nhau, vì 13 < 31 nên 13 × 5 < 31 × 5.
*) 502 × 6 … 500 × 6
Hai phép tính trên có thừa số 6 giống nhau, vì 502 > 500 nên 502 × 6 > 500 × 6
*) 240 × 3 … 420 × 3
Hai phép tính trên có thừa số 3 giống nhau, vì 240 < 420 nên 240 × 3 < 420 × 3.
*) 7 × 620 … 602 × 7
Hai phép tính trên có thừa số 7 giống nhau, vì 620 > 602 nên 7 × 620 > 602 × 7.
1 ) 42 x 91 + 6 x 19 x 7 - 420
2 ) 99 x 1001 - 99
42x91+6x19x7-420
=42x91+(6x7)x19-420
=42x91+42x19-420
=42x(91+19)-420
=42x100-42x10
=42x(100-10)
=42x90
=3780
2)99x1001-99
=99x1001-99x1
=99x(1001-1)
=99x1000
=99000
tìm x biết:
12. (x +41)=624
420:(3. x-6)=7
\(12.\left(x+41\right)=624\)
\(\Leftrightarrow x+41=52\)
\(\Leftrightarrow x=11\)
\(420:\left(3x-6\right)=7\)
\(\Leftrightarrow3x-6=60\)
\(\Leftrightarrow3x=66\)
\(\Leftrightarrow x=22\)
12 . ( x + 41 ) = 624
x + 41 = 624 : 12
x + 41 = 52
x = 52 - 41
x = 11
420 : ( 3 . x-6 ) = 7
3 . x - 6 = 420 : 7
3 . x - 6 = 60
3 . x = 60 + 6
3 . x = 66
x = 66 : 3
x = 22
12.(X+41)=624
(X+41)=624:12
X = 52-41
X = 11
420:(3.X-6)=7
(3.X-6)=420:7
3.X-6 = 60
3.X = 60-6
3.X = 54
X = 54:3
X = 18
a)
160 : (4 x 8)
160 : 4 : 8
Thực hiện các phép tính sau
a)96 : (3 x 8)
96 : 3 : 8
105 : (5 x 7)
105 : 5 : 7
b)
270 : (9 x 6)
420 : (7 x 3)
144 : (2 x 8)
a)
160 : (4 × 8) = 160 : 32 = 5
160 : 4 : 8 = 40 : 8 = 5
Vậy 160 : (4 × 8) = 160 : 4 : 8.
96 : (3 × 8) = 96 : 24 = 4
96 : 3 : 8 = 32 : 8 = 4
Vậy 96 : (3 × 8) = 96 : 3 : 8.
105 : (5 × 7) = 105 : 35 = 3
105 : 5 : 7 = 21 : 7 = 3
Vậy 105 : (5 × 7) = 105 : 5 : 7.
Nhận xét: a : (b × c) = a : b : c
b)
270 : (9 × 6) = 270 : 9 : 6 = 30 : 6 = 5
420 : (7 × 3) = 420 : 7 : 3 = 60 : 3 = 20
144 : (2 × 8) = 144 : 2 : 8 = 72 : 8 = 9
Tìm x:
a) [ 25 - ( x + 1,85 ) ] : 3 = 7
b) 420 : [ 75 - ( x - 10 ) ] = 21
a) [ 25 - ( x + 1,85 ) ] : 3 = 7
[ 25 - ( x + 1,85) ] = 7x3
[ 25 - ( x + 1,85 ) ] = 21
x + 1,85= 25-21
x + 1,85= 4
x= 4-1,85
x= 2,15
a) [25 - (x + 1,85)] : 3 = 7
=> 25 - (x + 1,85) = 3 x 7
=> 25 - (x + 1,85) = 21
=> x + 1,85 = 25 - 21
=> x + 1,85 = 4
=> x = 4 - 1,85
=> x = 2,15
b) 420 : [75 - (x - 10)] = 21
=> 75 - (x - 10) = 420 : 21
=> 75 - (x - 10) = 20
=> x - 10 = 75 - 20
=> x - 10 = 55
=> x = 55 + 10
=> x = 65
b) 420 : [ 75 - ( x-10 ) ] = 21
[ 75 - ( x-10) ]= 420:21
[ 75 - ( x-10) ] = 20
( x- 10) =75-20
x-10 = 55
x= 55+10
x=65
a, 4x(x2-x-1)-(x2-2)(x+3)
b, (x+5)(x+7)-7x(x+3)
c, x(x2-x-2)-(x+5)(x-1)
d, (x+5)(x+7)-(x-4)(x+3)
`@` `\text {dnammv}`
`a,`
`4x(x^2-x-1)-(x^2-2)(x+3)`
`= 4x^3-4x^2-4x- [x^2(x+3)-2(x+3)]`
`= 4x^3-4x^2-4x- (x^3+3x^2-2x-6)`
`= 4x^3-4x^2-4x-x^3-3x^2+2x+6`
`= 3x^3 - 7x^2-2x+6`
`b,`
`(x+5)(x+7)-7x(x+3)`
`= x(x+7)+5(x+7)-7x^2-21x`
`= x^2+7+5x+35-7x^2-21x`
`= -6x^2-16x+35`
`c,`
`x(x^2-x-2)-(x+5)(x-1)`
`= x^3-x^2-2x- [x(x-1)+5(x-1)]`
`= x^3-x^2-2x- (x^2-x+5x-5)`
`= x^3-x^2-2x - x^2 + x -5x+5`
`= x^3-2x^2- 4x+5`
`d,`
`(x+5)(x+7)-(x-4)(x+3)`
`= x(x+7)+5(x+7)- [x(x+3)-4(x+3)]`
`= x^2+7x+5x+35 - (x^2+3x-4x-12)`
`= x^2+12x+35 - x^2+x+12`
`= 13x+47`
5) D=(x-7)*(x+5)-(x-4)*(x+3)
6) E= 4x*(x2-x-1)-(x+3)*(x2-2)
7) F= 5x*(x-3)*(x-1)-4x*(x2-2x)
Tìm X:
a)(x-4)(x+4)=9
b)x2-4x+4-(5x-2)2=0
c)4x2+4+1-x2-10x-25=0
d)(x2+x+7)(x2+x-7)=(x2+x)2-7x
a)
⇔ \(x^2-16=9\)
⇔ \(x^2=25\)
⇔ \(x=\pm5\)
b)
⇔ \(x^2-4x+4-25x^2+20x-4=0\)
⇔ \(16x-24x^2=0\)
⇔ \(8x\left(2-3x\right)=0\)
⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)
c)
⇔ \(3x^2-10x-20=0\)
⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)
⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)
⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)
Vậy...
d)
⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)
⇔ 7x = 49
⇔ x=7
Vậy...