\(M=\left(\dfrac{-2}{7}xy^2\right)^2\left(\dfrac{7}{4}x^3y^4\right)\)
Tính:
a, \(\dfrac{1}{2}xy^5\left(-ab^2\right)^2\left(-x^3z^7\right)\) với a;b là hằng số
b, \(-x^3y+\dfrac{1}{2}x^3y-\dfrac{3}{4}x^3y\)
c, \(4x^2+\dfrac{1}{2}x-7-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)
d, \(\left(-3xy^2\right)^5.\left(-x^3y^6\right)\)
Tính:
a, \(\dfrac{1}{2}xy^5\left(-ab^2\right)^2\left(-x^3z^7\right)\) với a;b là hằng số
b, \(-x^3y+\dfrac{1}{2}x^3y-\dfrac{3}{4}x^3y\)
c, \(4x^2+\dfrac{1}{2}x-7-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)
d, \(\left(-3xy^2\right)^5.\left(-x^3y^6\right)\)
a: \(=\dfrac{1}{2}\cdot xy^5\cdot a^2b^4\cdot-x^3z^7=-\dfrac{1}{2}a^2b^4\cdot x^4y^5z^7\)
b: \(=x^3y\left(-1+\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{5}{4}x^3y\)
c: \(=4x^2+\dfrac{1}{2}x-7-3x^2-\dfrac{1}{2}x+\dfrac{1}{2}=x^2-\dfrac{13}{2}\)
d: \(=-243x^5y^{10}\cdot\left(-x^3y^6\right)=243x^8y^{16}\)
\(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\)
\(\dfrac{1}{x+2}+\dfrac{3}{x^2-4}+\dfrac{x-14}{\left(x^2+4x+4\right).\left(x-2\right)}\)
\(\dfrac{1}{x+2}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\dfrac{1}{x+3}+\dfrac{1}{\left(x+3\right).\left(x+2\right)}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\left(1\right)=\dfrac{y}{x\left(2x-y\right)}-\dfrac{4x}{y\left(2x-y\right)}=\dfrac{y^2-4x^2}{xy\left(2x-y\right)}=\dfrac{-\left(y-2x\right)\left(y+2x\right)}{xy\left(y-2x\right)}=\dfrac{-y-2x}{xy}\\ \left(2\right)=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\\ \left(3\right)=\dfrac{4\left(x+2\right)}{\left(x+2\right)\left(4x+7\right)}=\dfrac{4}{4x+7}\\ \left(4\right)=\dfrac{4x^2+15x+4+4x+7+1}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}=\dfrac{4x^2+19x+12}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}\)
Thu gọn đơn thức, tìm bậc, hệ số, biến
A = \(x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right)
\)
B = \(\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right)\)
\(A=x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right).\\ A=-\dfrac{1}{2}x^8y^5.\)
- Bậc: 8.
- Hệ số: \(-\dfrac{1}{2}.\)
- Biến: \(x;y.\)
\(B=\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right).\\ B=\dfrac{2}{3}x^8y^9.\)
- Bậc: 9.
- Hệ số: \(\dfrac{2}{3}.\)
- Biến: \(x;y.\)
\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)
Làm tính chia:
a) \(5x^2y^4:10x^2y\)
b)\(\dfrac{3}{4}x^3y^3:\left(-\dfrac{1}{2}x^2y^2\right)\)
c)\(\left(-xy\right)^{10}:\left(-xy\right)^5\)
a: \(5x^2y^4:10x^2y=\dfrac{1}{2}y^3\)
c: \(\left(-xy\right)^{10}:\left(-xy\right)^5=-x^5y^5\)
Bài 1: Thực hiện phép tính:
a) \(32x^5\left(3y-7\right)^5:[-4x\left(7-3y\right)^4]\)
b) \(\dfrac{12x^3\left(3x-5\right)^2}{4x\left(3x-5\right)^2}-\dfrac{2x\left(x+7\right)^4}{\left(x+7\right)^3}\)
a)\(\dfrac{32x^5\left(3y-7\right)^5}{-4x\left(7-3y\right)^4}=\dfrac{-4x.\left(-8x^4\right)\left(3y-7\right)^4\left(3y-7\right)}{-4x\left(3y-7\right)^4}\)
\(=\dfrac{\left(-8x^4\right)\left(3y-7\right)}{1}=\left(-8x^4\right)\left(3y-7\right)\)
\(=-32x^4y+56x^4\)
b) \(\dfrac{12x^3\left(3x-5\right)^2}{4x\left(3x-5\right)^2}-\dfrac{2x\left(x+7\right)}{\left(x+7\right)^3}=\dfrac{12x^3}{4x}-\dfrac{2x}{\left(x+7\right)^2}\)
\(=3x^2-\dfrac{2x}{\left(x+7\right)^2}\)
\(\)
R/gọn: \(\left(\dfrac{x^2}{x+y}+y\right).\left(\dfrac{1}{x^2-xy}-\dfrac{3y^2}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\right)\)
\(\left(\dfrac{x^2}{x+y}+y\right).\left(\dfrac{1}{x^2-xy}-\dfrac{3y^3}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\right)\)
\(=\left(\dfrac{x^2+xy+y^2}{x+y}\right).\left(\dfrac{1}{x\left(x-y\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(=\left(\dfrac{x^2+xy+y^2}{x+y}\right).\left(\dfrac{x^2+xy+y^2}{x\left(x^3-y^3\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{xy-y^2}{x\left(x^3-y^3\right)}\right)\)
\(=\dfrac{x\left(x^3-y^3\right)}{x^3-xy^2}.\dfrac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x^3-y^3\right)}\\ =\dfrac{x^2-y^2}{x\left(x^2-y^2\right)}=\dfrac{1}{x}\)
mình viết trên máy tinh hơi xấu bạn thông cảm nhé!!!Nếu ko chê có thể xem cách giải này!
\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)