Giải hpt:
1, \(\left\{{}\begin{matrix}x^2+y+x^3y+x^2y+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^4+2x^2y+x^2y^2=-2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}\sqrt{x^2+y^2}+\sqrt{2xy}=8\sqrt{2}\\\sqrt{x}+\sqrt{y}=4\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}\sqrt{x^3+3}+\left|y\right|=\sqrt{3}\\\sqrt{y^2+5}+\left|x\right|=\sqrt{x^2+5}\end{matrix}\right.\)
1)\(\begin{cases}x^2-y\left(x+y\right)+1=0\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{cases}\)
2)\(\begin{cases}x^2-4x+y^4+4y^2=2\\xy^2+2y^2+6x=23\end{cases}\)
3)\(\begin{cases}2x+\frac{1}{x+y}=3\\4x^2+4y^2+4xy+\frac{3}{\left(x+y\right)^2}=7\end{cases}\)
4)\(\begin{cases}y^6+x^9+3y^4+3y^2=8\\4y^2-3x^3y^2+x^3=2\end{cases}\)
5)\(\begin{cases}\sqrt{x+y}-2\sqrt{x-y}=1\\x+\sqrt{x^2+y^2}=8\end{cases}\)
6) \(\begin{cases}x+y-2=\frac{y}{x^2+1}\\x^2+y^2+xy=y-1\end{cases}\)
7) \(\begin{cases}4x-1=\sqrt{\left(2x+y\right).\left(2y+1\right)}\\\sqrt{x+2y+1}-\sqrt{x+y-1}=\sqrt{x-1}\end{cases}\)
8) \(\begin{cases}\left(x+y\right).\left(x+4y^2+y\right)+3y^4=0\\\sqrt{x+2y^2+1}-y^2+y+1=0\end{cases}\)
\(\left\{{}\begin{matrix}x-y-x=5\\x^2+y^2-xy=7\end{matrix}\right.\)
mong mọi người giải hệ này giúp mình
Giai hệ phương trình : \(\left\{{}\begin{matrix}y^2+\sqrt{3y^2-2x+3}=\dfrac{2x}{3}+5\\3x-2y=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}17\left(x-y\right)=3xy-2x^2-y^2\\\sqrt{x+3}+\sqrt{10-y}=x^2-7y+11\end{matrix}\right.\)
giải hệ PT: \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x+1\right)\left(y+1\right)=8\\7y^2+6xy\left(x+2y\right)=25\end{matrix}\right.\)
Tìm m để phương trình \(\left\{{}\begin{matrix}x^2+y^2=4\\x-y^2=m\end{matrix}\right.\) có nghiệm