Bài 3: Rút gọn phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Loveduda

R/gọn: \(\left(\dfrac{x^2}{x+y}+y\right).\left(\dfrac{1}{x^2-xy}-\dfrac{3y^2}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\right)\)

Trần Thu Ngân
30 tháng 5 2017 lúc 23:28

Hỏi đáp Toán

Đặng Quý
31 tháng 5 2017 lúc 6:56

\(\left(\dfrac{x^2}{x+y}+y\right).\left(\dfrac{1}{x^2-xy}-\dfrac{3y^3}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\right)\)

\(=\left(\dfrac{x^2+xy+y^2}{x+y}\right).\left(\dfrac{1}{x\left(x-y\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(=\left(\dfrac{x^2+xy+y^2}{x+y}\right).\left(\dfrac{x^2+xy+y^2}{x\left(x^3-y^3\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{xy-y^2}{x\left(x^3-y^3\right)}\right)\)

\(=\dfrac{x\left(x^3-y^3\right)}{x^3-xy^2}.\dfrac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x^3-y^3\right)}\\ =\dfrac{x^2-y^2}{x\left(x^2-y^2\right)}=\dfrac{1}{x}\)

Trần Thu Ngân
30 tháng 5 2017 lúc 23:29

mình viết trên máy tinh hơi xấu bạn thông cảm nhé!!!Nếu ko chê có thể xem cách giải này!


Các câu hỏi tương tự
Thái Đào
Xem chi tiết
Phan Thị Huyền
Xem chi tiết
phạm minh đức
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Quỳnh Như
Xem chi tiết
Thu Phương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Mai Tuyết Hoa
Xem chi tiết
Công chúa vui vẻ
Xem chi tiết