Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mang Phạm
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2022 lúc 12:32

\(y'=3x^2-2\)

hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)

\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)

Mang Phạm
Xem chi tiết
nguyễn thị hương giang
1 tháng 4 2022 lúc 17:18

Câu 17.

undefined

Xét tam giác IHJ vuông tại H:

\(sinr=\dfrac{HJ}{IJ}=\dfrac{HJ}{\sqrt{HI^2+HJ^2}}\)

Chiết xuất: \(\dfrac{sini}{sinr}=n\)

\(\Rightarrow\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{HI^2+HJ^2}}{HJ}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{3}{4}\cdot\dfrac{60^2+HJ^2}{HJ^2}=\dfrac{16}{9}\Rightarrow HJ=51,25cm\)

Độ dài bóng của thành bể tạo ở đáy:

\(HJ+x=85,9cm\)

Chọn A

Mang Phạm
Xem chi tiết
nguyễn thị hương giang
29 tháng 3 2022 lúc 20:25

Góc giới hạn phản xạ toàn phần:

\(sini_{gh}=\dfrac{n_2}{n_1}\)

\(\Rightarrow sini_{gh}=\dfrac{\dfrac{4}{3}}{\sqrt{3}}=\dfrac{4\sqrt{3}}{9}\)

\(\Rightarrow i_{gh}=50,2^o\)

Chọn A

Mang Phạm
Xem chi tiết
nguyễn thị hương giang
29 tháng 3 2022 lúc 20:12

undefined

Xét \(\Delta HIJ\) vuông tại H:

\(sinr=\dfrac{HJ}{IJ}=\dfrac{HJ}{\sqrt{HI^2+HJ^2}}\)

\(\Rightarrow\dfrac{sini}{sinr}=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{HI^2+HJ^2}}{HJ}=n\)

\(\Rightarrow\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{60^2+HJ^2}}{HJ}=\dfrac{4}{3}\)

\(\Rightarrow HJ=51,25cm\)

Độ dài vệt sáng:

\(y=x+HJ=85,9cm\)

Chọn B

Trúc Phạm
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 21:47

38.

\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)

\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)

\(y\left(2\right)=-\dfrac{11}{3}\)

Phương trình d:

\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)

Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 21:54

39.

Gọi E là trung điểm AB, F là trung điểm CD

Từ E kẻ EH vuông góc SF (H thuộc SF)

Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)

\(\Rightarrow SE\perp CD\)

\(EF||AD\Rightarrow EF\perp CD\)

\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)

\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)

Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)

\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)

Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 21:55

Hình vẽ câu 39:

undefined

Hoàng Tuệ Lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 13:11

\(=8\cdot25-72:9=200-8=192\)

Nguyễn Chi
9 tháng 1 2022 lúc 13:12

= 8 . 25 - 72 : 9

= 200 - 8

= 192

hami
9 tháng 1 2022 lúc 13:14

2^3.25-72:3^2

=8.25-72:9

=192

Mèo con
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 14:44

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{mx^2-\left(m+3\right)x+3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(mx-3\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(mx-3\right)=m-3\)

\(f\left(1\right)=m^2-15\)

Hàm liên tục tại \(x=1\) khi:

\(m-3=m^2-15\Rightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

\(4^2+\left(-3\right)^2=25\)

Trúc Phạm
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 21:28

14.

A là khẳng định sai, CD không vuông góc SB

(Vì nếu \(CD\perp SB\)  (1); do \(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\) (2)

(1);(2) \(\Rightarrow CD\perp\left(SAB\right)\Rightarrow CD\perp AB\) (vô lý do \(CD||AB\))

 

Mèo con
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 14:35

5.

A là mệnh đề sai, vì các mặt bên của chóp đều luôn tạo với đáy các góc bằng nhau

6.

Do tam giác SAB cân tại S \(\Rightarrow SH\perp AB\) (trung tuyến đồng thời là đường cao)

Mà \(\left\{{}\begin{matrix}AB=\left(SAB\right)\cap\left(ABCD\right)\\\left(SAB\right)\perp\left(ABCD\right)\end{matrix}\right.\)

\(\Rightarrow SH\perp\left(ABCD\right)\)

Hay SH là đường cao của chóp

Trúc Phạm
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 19:04

29.

\(y'=\dfrac{1}{3}x^3-\dfrac{1}{2}\left(m^2+1\right)x^2+\left(m^2-7m+12\right)x\)

\(y''=x^2-\left(m^2+1\right)x+m^2-7m+12\)

Pt \(y''=0\) có 2 nghiệm trái dấu khi và chỉ khi:

\(1.\left(m^2-7m+12\right)< 0\)

\(\Leftrightarrow3< m< 4\)

\(\Rightarrow\) Không có giá trị nguyên nào của m thỏa mãn

30.

\(y'=x^2-2\left(2m+1\right)x-m\ge0;\forall x\)

\(\Leftrightarrow\Delta'=\left(2m+1\right)^2+m\le0\)

\(\Leftrightarrow4m^2+5m+1\le0\)

\(\Leftrightarrow-1\le m\le-\dfrac{1}{4}\)

\(\Rightarrow\) Có 1 giá trị nguyên của m thỏa mãn (\(m=-1\))