Tìm x, biết:
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
so sánh: \(A=26^2-24^2\) và \(B=27^2-25^2\)
tìm x, biết:
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
Bài 1:
\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2\cdot50=100\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2\cdot52=104\)
=>A<B
Bài 2:
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
=>\(4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)
=>\(4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
=>4x+13=11
=>4x=-2
=>\(x=-\dfrac{1}{2}\)
Tìm x biết:
a) \(\left|x+2\dfrac{1}{2}\right|=\left|3x+1\right|\)
b) \(\left|2x-6\right|+\left|x+3\right|=8\)
c) \(2.\left|x+2\right|+\left|4-x\right|=11\)
\(c,\Rightarrow\left[{}\begin{matrix}-2\left(x+2\right)+\left(4-x\right)=11\left(x< -2\right)\\2\left(x+2\right)+\left(4-x\right)=11\left(-2\le x\le4\right)\\2\left(x+2\right)+\left(x-4\right)=11\left(x>4\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{11}{3}\left(tm\right)\\x=3\left(tm\right)\\x=\dfrac{11}{3}\left(ktm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{3}\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}x+\dfrac{5}{2}=3x+1\\x+\dfrac{5}{2}=-3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{7}{8}\end{matrix}\right.\)
\(b,\Rightarrow\left[{}\begin{matrix}6-2x-x-3=8\left(x\le-3\right)\\6-2x+x+3=8\left(-3\le x\le3\right)\\2x-6+x+3=8\left(x>3\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-5}{3}\left(ktm\right)\\x=1\left(tm\right)\\x=\dfrac{11}{3}\left(tm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{11}{3}\end{matrix}\right.\)
Tìm x biết a) \(4\left(x-1\right)^2-9\left(x+2\right)^2=0\)
b) \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x+1\right)\left(x-1\right)=11\)
a) \(\Leftrightarrow\left(2x-2\right)^2-\left(3x+6\right)^2=0\)
\(\Leftrightarrow\left(\left(2x-2\right)+\left(3x+6\right)\right)\left(\left(2x-2\right)-\left(3x+6\right)\right)=0\)
\(\Leftrightarrow\left(5x+4\right)\left(-x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x+4=0\\-x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{4}{5}\\x=-8\end{cases}}}\)
b) \(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
\(\Leftrightarrow4x+13=11\)
\(\Leftrightarrow x=-\frac{1}{2}\)
a) \(4\left(x-1\right)^2-9\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-1\right)\right]^2-\left[3\left(x+2\right)\right]^2=0\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(3x+6\right)^2=0\)
\(\Leftrightarrow\left(2x-2+3x+6\right)\left(2x-2-3x-6\right)=0\)
\(\Leftrightarrow\left(5x+4\right)\left(-x-8\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}5x+4=0\\-x-8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{4}{5}\\x=-8\end{cases}}}\)
b) \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x+1\right)\left(x-1\right)=11\)
\(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
\(\Leftrightarrow4x+13=11\)
\(\Leftrightarrow4x=-2\)
\(\Leftrightarrow x=-\frac{2}{4}=-\frac{1}{2}\)
(Nhớ k cho mình với nhé!)
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Tìm x, biết: \(4.\left(x+1\right)^2+\left(2x-1\right)^2-8.\left(x-1\right)\left(x+1\right)=11\)
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
\(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-2x+1\right)-8\left(x^2-1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-2x+1-8x^2+8=11\)
\(\Leftrightarrow6x=11-8-1-4=-2\)
\(\Leftrightarrow x=-\dfrac{2}{6}=-\dfrac{1}{3}\)
Vậy..................
Bài 4 : Tìm \(x\), biết :
a ) \(\left|4-2x\right|+\left|x+3\right|=8\)
b ) \(\left|x+1\right|+\left|x-2\right|+\left|x+3\right|=6\)
c ) \(\left|x-2\right|+\left|x-3\right|+\left|4-x\right|=2\)
d ) \(2\left|x+2\right|+\left|4-3x\right|=11\)
e ) \(\left|2x-1\right|+\left|2x-5\right|=4\)
g ) \(\left|x-3\right|+\left|3x+4\right|=\left|2x+1\right|\)
BT9: Tìm x biết
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\)
\(10,\left(x+3\right)^2-x^2=45\)
\(11,\left(5x-4\right)^2-49x^2=0\)
\(12,16\left(x-1\right)^2-25=0\)
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)
\(10,\left(x+3\right)^2-x^2=45\)
\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)
Vậy \(S=\left\{6\right\}\)
\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)
\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)
Tìm x
a, \(\dfrac{\left(x+2\right)^2}{2}\) + \(\dfrac{\left(1+2x\right)^2}{4}\) + \(\dfrac{\left(1-2x\right)^2}{8}\) – (1 + x)2 = 0
b, \(\dfrac{\left(x+1\right)^2}{2}\) - \(\dfrac{\left(1-2x\right)^2}{3}\) + \(\dfrac{\left(1+2x\right)^2}{4}\) - \(\dfrac{\left(5-x\right)^2}{6}\)= 0
c, (3 + x)3 – 3x2(x + 4) + (x + 2)3 = (1 – x)3 – 8
a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)
\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)
\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)
\(\Leftrightarrow8x^2+4x+11=0\)
\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)
Vì Δ<0 nên phương trình vô nghiệm
b.
PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)
\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)
\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)
\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)
$\Leftrightarrow 5x-\frac{15}{4}=0$
$\Leftrightarrow x=\frac{3}{4}$
c.
PT $\Leftrightarrow (x^3+9x^2+27x+27)-(3x^3+12x^2)+(x^3+6x^2+12x+8)=(-x^3+3x^2-3x+1)-8$
$\Leftrightarrow 42x+42=0$
$\Leftrightarrow x=-1$
tim x\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x-1\right)=11\)