\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
Tính nhanh:
\(\dfrac{9}{8}x\dfrac{8}{7}x\dfrac{7}{3}x\dfrac{1}{3}\)
\(=\dfrac{9}{7}\cdot\dfrac{7}{9}=1\)
\(\dfrac{9}{8}x\dfrac{8}{7}x\dfrac{7}{3}x\dfrac{1}{3}=\dfrac{9x8x7x1}{8x7x3x3}=1\)
\(=\dfrac{9x8}{8x7}x\)\(\dfrac{7}{3.3}\)
= \(\dfrac{9}{7}.\)\(\dfrac{7}{9}=1\)
Tính bằng cách thuận tiện nhất:
a) 60 x (\(\dfrac{7}{12}\) + \(\dfrac{4}{15}\))
b) \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{4}{5}\) x \(\dfrac{5}{6}\) x \(\dfrac{6}{7}\) x \(\dfrac{7}{8}\) x \(\dfrac{8}{9}\)
60x [7/12+4/15]
60x153/180
=9180/180
b 1/2x2/3x3/4x4/5x5/6x6/7x7/8x8/9=40320/4032
Giải các phương trình sau:
a) \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\).
b) \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\).
c) \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\).
d) \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\).
a) ĐKXĐ: \(x\ne1\)
Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow21x-2x=-2+9\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\dfrac{7}{19}\)
Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)
\(x\) x {\(\dfrac{1}{4}\) + \(\dfrac{1}{5}\)} - {\(\dfrac{1}{7}\) + \(\dfrac{1}{8}\)}
2 : \(x\) = \(x\) : \(\dfrac{8}{49}\)
`2 : x = x : 8/49`
`<=> x^2 = 16/49`
`<=> x = +-4/7`
tìm x
a) \(1\dfrac{1}{2}:x=\dfrac{1}{2}\) b)\(\dfrac{7}{9}-x=\dfrac{2}{3}\) c)\(\dfrac{8}{7}:x=\dfrac{6}{7}\) d)\(\dfrac{9}{5}-x=\dfrac{3}{7}\)
a) \(\Leftrightarrow\dfrac{3}{2}:x=\dfrac{1}{2}\\ \Leftrightarrow x=\dfrac{3}{2}:\dfrac{1}{2}\\ \Leftrightarrow x=3\)
b) \(\Leftrightarrow x=\dfrac{7}{9}-\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{1}{9}\)
c) \(\Leftrightarrow x=\dfrac{8}{7}:\dfrac{6}{7}\\ \Leftrightarrow x=\dfrac{4}{3}\)
d) \(\Leftrightarrow x=\dfrac{9}{5}-\dfrac{3}{7}\\ \Leftrightarrow x=\dfrac{48}{35}\)
a) x = 3
b) x = \(\dfrac{1}{9}\)
c) x = \(\dfrac{4}{3}\)
d)\(\dfrac{48}{35}\)
Giải các phương trình:
a) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
b) \(\dfrac{8-x}{x-7}\) - 8 = \(\dfrac{1}{x-7}\)
c) \(\dfrac{1}{x-1}\) + \(\dfrac{2x}{x^2+x+1}\) = \(\dfrac{3x^2}{x^3-1}\)
d) \(\dfrac{y+5}{y^2-5y}\) - \(\dfrac{y-5}{2y^2+10y}\) = \(\dfrac{y+25}{2y^2-50}\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
a) \(2\dfrac{1}{2}\) - x + \(\dfrac{4}{5}\) = \(\dfrac{2}{3}\) - (\(-\dfrac{4}{7}\) )
b) \(-\dfrac{4}{7}\) - x = \(\dfrac{3}{5}\) - 2x
c) (\(\dfrac{3}{8}\) - \(\dfrac{1}{5}\) ) + (\(\dfrac{5}{8}\) - x) = \(\dfrac{1}{5}\)
\(a,2\dfrac{1}{2}-x+\dfrac{4}{5}=\dfrac{2}{3}-\left(-\dfrac{4}{7}\right)\\ \Rightarrow\dfrac{5}{2}-x+\dfrac{4}{5}=\dfrac{26}{21}\\ \Rightarrow\dfrac{5}{2}-x=\dfrac{46}{105}\\ \Rightarrow x=\dfrac{433}{210}\\ b,-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\\ \Rightarrow2x-\dfrac{4}{7}-x=\dfrac{3}{5}\\ \Rightarrow2x-x=\dfrac{41}{35}\\ \Rightarrow x=\dfrac{41}{35}\\ c,\left(\dfrac{3}{8}-\dfrac{1}{5}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{1}{5}\\ \Rightarrow\dfrac{7}{40}+\dfrac{5}{8}-x=\dfrac{1}{5}\\ \Rightarrow\dfrac{4}{5}-x=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{3}{5}.\)
a)x-\(\dfrac{2}{3}=\dfrac{8}{7}\)
b)\(\left(x+\dfrac{1}{3}\right)=\dfrac{4}{25}\)
c)\(-\dfrac{2}{3}\div x+\dfrac{5}{8}=-\dfrac{7}{12}\)
a.\(x-\dfrac{2}{3}=\dfrac{8}{7}\)
\(x=\dfrac{8}{7}+\dfrac{2}{3}\)
x=\(\dfrac{38}{21}\)
b.\(\left(x+\dfrac{1}{3}\right)=\dfrac{4}{25}
\)
x=\(\dfrac{4}{25}-\dfrac{1}{3}\)
x=\(-\dfrac{13}{75}\)
c.\(-\dfrac{2}{3}:x+\dfrac{5}{8}=-\dfrac{7}{12}\)
\(-\dfrac{2}{3}:x=-\dfrac{29}{24}\)
x=\(\dfrac{16}{29}\)
a)\(\dfrac{7}{8}\)x\(\dfrac{3}{13}\)+\(\dfrac{4}{9}\)x\(\dfrac{4}{13}\)
b)\(\dfrac{6}{5}\)+\(\dfrac{7}{3}\)+\(\dfrac{8}{9}\)
c)23: \(\dfrac{5}{14}\)+\(\dfrac{6}{7}\)+\(\dfrac{4}{9}\)
d)\(4\dfrac{1}{4}\)+\(7\dfrac{3}{7}\)-\(2\dfrac{4}{17}\)
e)8-(9\(\dfrac{2}{11}\)+\(\dfrac{8}{33}\))
a, \(\dfrac{7}{8}\) \(\times\) \(\dfrac{3}{13}\) + \(\dfrac{4}{9}\) \(\times\) \(\dfrac{4}{13}\)
= \(\dfrac{1}{13}\) \(\times\)( \(\dfrac{21}{8}\) + \(\dfrac{16}{9}\))
= \(\dfrac{1}{13}\) \(\times\)( \(\dfrac{189}{72}\) + \(\dfrac{128}{72}\))
= \(\dfrac{1}{13}\) \(\times\) \(\dfrac{317}{73}\)
= \(\dfrac{317}{949}\)
b, \(\dfrac{6}{5}\) + \(\dfrac{7}{3}\) + \(\dfrac{8}{9}\)
= \(\dfrac{54}{45}\) + \(\dfrac{105}{45}\) + \(\dfrac{40}{45}\)
= \(\dfrac{199}{45}\)
c, 23 : \(\dfrac{5}{14}\) + \(\dfrac{6}{7}\) + \(\dfrac{4}{9}\)
= \(\dfrac{322}{5}\) + \(\dfrac{6}{7}\) + \(\dfrac{4}{9}\)
= \(\dfrac{20286}{315}\) + \(\dfrac{270}{315}\) + \(\dfrac{140}{315}\)
= \(\dfrac{20696}{315}\)
d, 4\(\dfrac{1}{4}\) + 7\(\dfrac{3}{7}\) - 2\(\dfrac{4}{17}\)
= 4 + \(\dfrac{1}{4}\) + 7 + \(\dfrac{3}{7}\) - 2 - \(\dfrac{4}{17}\)
= (4+7-2) + (\(\dfrac{1}{4}\) + \(\dfrac{3}{7}\) - \(\dfrac{4}{17}\))
= 9 + \(\dfrac{119}{476}\) + \(\dfrac{204}{476}\) - \(\dfrac{112}{476}\)
= 9\(\dfrac{211}{476}\) = \(\dfrac{4495}{476}\)
e, 8 - (9\(\dfrac{2}{11}\) + \(\dfrac{8}{33}\))
= 8 - 9 - \(\dfrac{2}{11}\) - \(\dfrac{8}{33}\)
= -1 - \(\dfrac{2}{11}\) - \(\dfrac{8}{33}\)
= \(\dfrac{-33}{33}\) - \(\dfrac{-6}{33}\) - \(\dfrac{8}{33}\)
= - \(\dfrac{47}{33}\)